IDEAS home Printed from https://ideas.repec.org/a/pal/jorapm/v21y2022i4d10.1057_s41272-021-00351-w.html
   My bibliography  Save this article

Robust price optimization of multiple products under interval uncertainties

Author

Listed:
  • Mahdi Hamzeei

    (NielsenIQ)

  • Alvin Lim

    (NielsenIQ)

  • Jiefeng Xu

    (NielsenIQ)

Abstract

In this paper, we solve a multi-product price optimization problem under interval uncertainty of the price sensitivity parameter in the demand function. The objective of the problem is to maximize the revenue of the firm where the decision variables are the prices of the products supplied by the firm. We propose an approach that yields solutions that remain optimal under different variations of the estimated price sensitivity parameters. We adopt a robust optimization approach by building a data-driven uncertainty set for the parameters, and then construct a deterministic counterpart for the robust optimization model. The numerical results show that two research objectives are fulfilled: the method reflects the uncertainty embedded in parameter estimations, and also an interval is obtained for optimal prices. We also conducted a simulation study to which we compared the results of our approach. The comparisons demonstrate that although robust optimization is deemed to be conservative, the results of the proposed approach indicate little lost revenue compared to those from the simulation.

Suggested Citation

  • Mahdi Hamzeei & Alvin Lim & Jiefeng Xu, 2022. "Robust price optimization of multiple products under interval uncertainties," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(4), pages 442-454, August.
  • Handle: RePEc:pal:jorapm:v:21:y:2022:i:4:d:10.1057_s41272-021-00351-w
    DOI: 10.1057/s41272-021-00351-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41272-021-00351-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/s41272-021-00351-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Melvyn Sim, 2004. "The Price of Robustness," Operations Research, INFORMS, vol. 52(1), pages 35-53, February.
    2. Yuri Levin & Jeff McGill & Mikhail Nediak, 2008. "Risk in Revenue Management and Dynamic Pricing," Operations Research, INFORMS, vol. 56(2), pages 326-343, April.
    3. Dimitris Bertsimas & David B. Brown, 2009. "Constructing Uncertainty Sets for Robust Linear Optimization," Operations Research, INFORMS, vol. 57(6), pages 1483-1495, December.
    4. Faiz A. Al-Khayyal & James E. Falk, 1983. "Jointly Constrained Biconvex Programming," Mathematics of Operations Research, INFORMS, vol. 8(2), pages 273-286, May.
    5. A. L. Soyster, 1973. "Technical Note—Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming," Operations Research, INFORMS, vol. 21(5), pages 1154-1157, October.
    6. John M. Mulvey & Robert J. Vanderbei & Stavros A. Zenios, 1995. "Robust Optimization of Large-Scale Systems," Operations Research, INFORMS, vol. 43(2), pages 264-281, April.
    7. Yossi Sheffi, 2005. "The Resilient Enterprise: Overcoming Vulnerability for Competitive Advantage," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262693496, April.
    8. A. Ben-Tal & A. Nemirovski, 1998. "Robust Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 23(4), pages 769-805, November.
    9. Vipul Agrawal & Sridhar Seshadri, 2000. "Impact of Uncertainty and Risk Aversion on Price and Order Quantity in the Newsvendor Problem," Manufacturing & Service Operations Management, INFORMS, vol. 2(4), pages 410-423, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikeda, Shunnosuke & Nishimura, Naoki & Sukegawa, Noriyoshi & Takano, Yuichi, 2023. "Prescriptive price optimization using optimal regression trees," Operations Research Perspectives, Elsevier, vol. 11(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    2. Wenqing Chen & Melvyn Sim & Jie Sun & Chung-Piaw Teo, 2010. "From CVaR to Uncertainty Set: Implications in Joint Chance-Constrained Optimization," Operations Research, INFORMS, vol. 58(2), pages 470-485, April.
    3. Xuejie Bai & Yankui Liu, 2016. "Robust optimization of supply chain network design in fuzzy decision system," Journal of Intelligent Manufacturing, Springer, vol. 27(6), pages 1131-1149, December.
    4. Antonio G. Martín & Manuel Díaz-Madroñero & Josefa Mula, 2020. "Master production schedule using robust optimization approaches in an automobile second-tier supplier," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 143-166, March.
    5. Hanks, Robert W. & Weir, Jeffery D. & Lunday, Brian J., 2017. "Robust goal programming using different robustness echelons via norm-based and ellipsoidal uncertainty sets," European Journal of Operational Research, Elsevier, vol. 262(2), pages 636-646.
    6. Donya Rahmani & Arash Zandi & Sara Behdad & Arezou Entezaminia, 2021. "A light robust model for aggregate production planning with consideration of environmental impacts of machines," Operational Research, Springer, vol. 21(1), pages 273-297, March.
    7. Jornada, Daniel & Leon, V. Jorge, 2016. "Robustness methodology to aid multiobjective decision making in the electricity generation capacity expansion problem to minimize cost and water withdrawal," Applied Energy, Elsevier, vol. 162(C), pages 1089-1108.
    8. Marla, Lavanya & Rikun, Alexander & Stauffer, Gautier & Pratsini, Eleni, 2020. "Robust modeling and planning: Insights from three industrial applications," Operations Research Perspectives, Elsevier, vol. 7(C).
    9. Ghazaleh Ahmadi & Reza Tavakkoli-Moghaddam & Armand Baboli & Mehdi Najafi, 2022. "A decision support model for robust allocation and routing of search and rescue resources after earthquake: a case study," Operational Research, Springer, vol. 22(2), pages 1039-1081, April.
    10. Almaraj, Ismail I. & Trafalis, Theodore B., 2019. "An integrated multi-echelon robust closed- loop supply chain under imperfect quality production," International Journal of Production Economics, Elsevier, vol. 218(C), pages 212-227.
    11. Güray Kara & Ayşe Özmen & Gerhard-Wilhelm Weber, 2019. "Stability advances in robust portfolio optimization under parallelepiped uncertainty," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(1), pages 241-261, March.
    12. Roya Soltani & Seyed J Sadjadi, 2014. "Reliability optimization through robust redundancy allocation models with choice of component type under fuzziness," Journal of Risk and Reliability, , vol. 228(5), pages 449-459, October.
    13. Ferrer, Juan-Carlos & Oyarzún, Diego & Vera, Jorge, 2012. "Risk averse retail pricing with robust demand forecasting," International Journal of Production Economics, Elsevier, vol. 136(1), pages 151-160.
    14. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    15. Ban Kawas & Aurelie Thiele, 2017. "Log-robust portfolio management with parameter ambiguity," Computational Management Science, Springer, vol. 14(2), pages 229-256, April.
    16. Yu, Pengfei & Gao, Ruotian & Xing, Wenxun, 2021. "Maximizing perturbation radii for robust convex quadratically constrained quadratic programs," European Journal of Operational Research, Elsevier, vol. 293(1), pages 50-64.
    17. Pamela Alvarez & Jorge Vera, 2014. "Application of Robust Optimization to the Sawmill Planning Problem," Annals of Operations Research, Springer, vol. 219(1), pages 457-475, August.
    18. Behzadi, Golnar & O’Sullivan, Michael Justin & Olsen, Tava Lennon & Zhang, Abraham, 2018. "Agribusiness supply chain risk management: A review of quantitative decision models," Omega, Elsevier, vol. 79(C), pages 21-42.
    19. Baron, Opher & Berman, Oded & Fazel-Zarandi, Mohammad M. & Roshanaei, Vahid, 2019. "Almost Robust Discrete Optimization," European Journal of Operational Research, Elsevier, vol. 276(2), pages 451-465.
    20. Mehdi Karimi & Somayeh Moazeni & Levent Tunçel, 2018. "A Utility Theory Based Interactive Approach to Robustness in Linear Optimization," Journal of Global Optimization, Springer, vol. 70(4), pages 811-842, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorapm:v:21:y:2022:i:4:d:10.1057_s41272-021-00351-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.