IDEAS home Printed from https://ideas.repec.org/a/pal/gpprii/v45y2020i4d10.1057_s41288-020-00185-4.html
   My bibliography  Save this article

Cyber assets at risk: monetary impact of U.S. personally identifiable information mega data breaches

Author

Listed:
  • Omer Ilker Poyraz

    (Old Dominion University)

  • Mustafa Canan

    (Naval Postgraduate School)

  • Michael McShane

    (Old Dominion University)

  • C. Ariel Pinto

    (Old Dominion University)

  • T. Steven Cotter

    (Old Dominion University)

Abstract

This study investigates various factors that can affect the monetary impact of data breaches on companies. This paper introduces a model for the total cost of a mega data breach based on a data set created from multiple sources that categorises stolen data for U.S. residents as personally identifiable information (PII) and sensitive personally identifiable information (SPII). We use a rigorous stepwise regression analysis that includes polynomial and factorial multilevel effects of the independent variables. There are three significant findings. First, our model finds a significant relation between total data breach cost and revenue, the total amount of PII and SPII, and class action lawsuits. Second, the categorisation of personal information as sensitive and non-sensitive explains the cost better than previous work. Finally, all of the independent variables demonstrate multilevel factorial interactions.

Suggested Citation

  • Omer Ilker Poyraz & Mustafa Canan & Michael McShane & C. Ariel Pinto & T. Steven Cotter, 2020. "Cyber assets at risk: monetary impact of U.S. personally identifiable information mega data breaches," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 616-638, October.
  • Handle: RePEc:pal:gpprii:v:45:y:2020:i:4:d:10.1057_s41288-020-00185-4
    DOI: 10.1057/s41288-020-00185-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/s41288-020-00185-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1057/s41288-020-00185-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Eling & Werner Schnell, 2016. "What do we know about cyber risk and cyber risk insurance?," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 17(5), pages 474-491, November.
    2. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    3. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    4. Spencer Wheatley & Thomas Maillart & Didier Sornette, 2016. "The extreme risk of personal data breaches and the erosion of privacy," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 89(1), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martin Eling & Michael McShane & Trung Nguyen, 2021. "Cyber risk management: History and future research directions," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 93-125, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Farkas, Sébastien & Lopez, Olivier & Thomas, Maud, 2021. "Cyber claim analysis using Generalized Pareto regression trees with applications to insurance," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 92-105.
    2. Zängerle, Daniel & Schiereck, Dirk, 2022. "Modelling and predicting enterprise‑level cyber risks in the context of sparse data availability," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 136276, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    3. Martin Eling & Michael McShane & Trung Nguyen, 2021. "Cyber risk management: History and future research directions," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 24(1), pages 93-125, March.
    4. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Trück & Jiwook Jang, 2023. "Cyber loss model risk translates to premium mispricing and risk sensitivity," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 372-433, April.
    5. Daniel Zängerle & Dirk Schiereck, 2023. "Modelling and predicting enterprise-level cyber risks in the context of sparse data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 434-462, April.
    6. Jevtić, Petar & Lanchier, Nicolas, 2020. "Dynamic structural percolation model of loss distribution for cyber risk of small and medium-sized enterprises for tree-based LAN topology," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 209-223.
    7. Domenico Giovanni & Arturo Leccadito & Marco Pirra, 2021. "On the determinants of data breaches: A cointegration analysis," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 141-160, June.
    8. Ulrik Franke & Amanda Hoxell, 2020. "Observable Cyber Risk on Cournot Oligopoly Data Storage Markets," Risks, MDPI, vol. 8(4), pages 1-15, November.
    9. Spencer Wheatley & Annette Hofmann & Didier Sornette, 2021. "Addressing insurance of data breach cyber risks in the catastrophe framework," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 46(1), pages 53-78, January.
    10. Eling, Martin & Jung, Kwangmin, 2018. "Copula approaches for modeling cross-sectional dependence of data breach losses," Insurance: Mathematics and Economics, Elsevier, vol. 82(C), pages 167-180.
    11. Matteo Malavasi & Gareth W. Peters & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang & Georgy Sofronov, 2021. "Cyber Risk Frequency, Severity and Insurance Viability," Papers 2111.03366, arXiv.org, revised Mar 2022.
    12. Ulrik Franke, 2020. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 45(4), pages 760-784, October.
    13. Ulrik Franke, 0. "IT service outage cost: case study and implications for cyber insurance," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 0, pages 1-25.
    14. Bennet Skarczinski & Mathias Raschke & Frank Teuteberg, 2023. "Modelling maximum cyber incident losses of German organisations: an empirical study and modified extreme value distribution approach," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 48(2), pages 463-501, April.
    15. Gareth W. Peters & Matteo Malavasi & Georgy Sofronov & Pavel V. Shevchenko & Stefan Truck & Jiwook Jang, 2022. "Cyber Loss Model Risk Translates to Premium Mispricing and Risk Sensitivity," Papers 2202.10588, arXiv.org, revised Mar 2023.
    16. Caroline Hillairet & Olivier Lopez, 2021. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Post-Print hal-02564462, HAL.
    17. Meng Sun & Yi Lu, 2022. "A Generalized Linear Mixed Model for Data Breaches and Its Application in Cyber Insurance," Risks, MDPI, vol. 10(12), pages 1-23, November.
    18. Eling, Martin & Loperfido, Nicola, 2017. "Data breaches: Goodness of fit, pricing, and risk measurement," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 126-136.
    19. Caroline Hillairet & Olivier Lopez, 2020. "Propagation of cyber incidents in an insurance portfolio: counting processes combined with compartmental epidemiological models," Working Papers hal-02564462, HAL.
    20. Malavasi, Matteo & Peters, Gareth W. & Shevchenko, Pavel V. & Trück, Stefan & Jang, Jiwook & Sofronov, Georgy, 2022. "Cyber risk frequency, severity and insurance viability," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 90-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:gpprii:v:45:y:2020:i:4:d:10.1057_s41288-020-00185-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.