IDEAS home Printed from https://ideas.repec.org/a/pal/assmgt/v3y2002i3d10.1057_palgrave.jam.2240076.html
   My bibliography  Save this article

Non-parametric forecasting for conditional asset allocation

Author

Listed:
  • S Beckers

    (WestLB Asset Management)

  • B Blair

    (Quantitative Analyst at WestAM)

Abstract

Conditional asset allocation (CAA) involves using key past economic and financial data to produce forecasts of expected returns for the various asset classes involved in the asset allocation decision. Traditional forecasting models for asset returns, in particular linear regression models and ARIMA time series based models, often provide economically meaningful asset allocation decisions. These results, however, only seem to possess power in-sample, and the out-of-sample performance of such methodologies suggests, consistent with efficient market theory, that there is no economic benefit from undertaking conditional asset allocation. Alternative forecasting models have only rarely been explored in the literature. Here, the economic forecasting power of kernel regression, a fairly common non-parametric statistical model, is investigated. As for the more traditional methodologies, it is found that the model has good economic significance in-sample. Unlike in the more traditional methods, this economic significance also persists in out-of-sample periods. Moreover, simple trading rules based on filtered signals from the model provide enhanced economic performance. The reasons why this alternative methodology provides better out-of-sample results are conjectured, and it is tied to the behaviour of the underlying asset prices.

Suggested Citation

  • S Beckers & B Blair, 2002. "Non-parametric forecasting for conditional asset allocation," Journal of Asset Management, Palgrave Macmillan, vol. 3(3), pages 213-228, December.
  • Handle: RePEc:pal:assmgt:v:3:y:2002:i:3:d:10.1057_palgrave.jam.2240076
    DOI: 10.1057/palgrave.jam.2240076
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1057/palgrave.jam.2240076
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1057/palgrave.jam.2240076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huijian Dong & Xiaomin Guo & Han Reichgelt & Ruizhi Hu, 2020. "Predictive power of ARIMA models in forecasting equity returns: a sliding window method," Journal of Asset Management, Palgrave Macmillan, vol. 21(6), pages 549-566, October.
    2. Mohan Subbiah & Frank J Fabozzi, 2016. "Equity style allocation: A nonparametric approach," Journal of Asset Management, Palgrave Macmillan, vol. 17(3), pages 141-164, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:assmgt:v:3:y:2002:i:3:d:10.1057_palgrave.jam.2240076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.