IDEAS home Printed from https://ideas.repec.org/a/pab/rmcpee/v25y2018i1p23-41.html
   My bibliography  Save this article

Modelos para otorgamiento y seguimiento en la gestión del riesgo de crédito || Models for Granting and Tracking in Credit Risk Management

Author

Listed:
  • Millán Solarte, Julio César

    (Departamento de Contabilidad y Finanzas, Facultad de Administración. Universidad del Valle, Cali (Colombia))

  • Caicedo Cerezo, Edinson

    (Departamento de Contabilidad y Finanzas, Facultad de Administración. Universidad del Valle, Cali (Colombia))

Abstract

Esta investigación muestra la aplicación y desempeño de tres modelos para la clasificación de solicitantes de créditos: el modelo de análisis discriminante, el de regresión logística y el de redes neuronales; técnicas empleadas por las instituciones financieras en el cálculo del scoring de crédito. Los resultados obtenidos muestran un mejor desempeño del modelo de redes neuronales en comparación con el de regresión logística y análisis discriminante, logrando una tasa de aciertos en la clasificación del 86.9%. Para los tres modelos se emplearon catorce variables que informan sobre las características socioeconómicas del prestatario y sobre las características propias de la operación crediticia. En el ámbito de la gestión financiera, este resultado es importante dado que puede complementarse con el cálculo de la probabilidad de incumplimiento, con los montos expuestos en cada operación de crédito y con la tasa de recuperación de la entidad para establecer el valor de las pérdidas esperadas a nivel individual y a nivel del portafolio de créditos de la entidad. || This research shows the application and performance of three models for the classification of credit applicants: discriminant analysis, logistic regression and neural networks; techniques used by financial institutions for the calculation of credit scoring. The results show a better performance of the neural network model compared to logistic regression and discriminant analysis, achieving a success rate of 86.9% in the classification. For the three models, fourteen variables were used to inform about applicant's socioeconomic characteristics and those of the credit operation. In the area of credit risk management, this result is relevant since it can be complemented by the calculation of default probability, the exposure at default and the recovery rate of the entity to establish the value of expected losses at both the individual level and the whole credit portfolio of the entity.

Suggested Citation

  • Millán Solarte, Julio César & Caicedo Cerezo, Edinson, 2018. "Modelos para otorgamiento y seguimiento en la gestión del riesgo de crédito || Models for Granting and Tracking in Credit Risk Management," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 25(1), pages 23-41, Junio.
  • Handle: RePEc:pab:rmcpee:v:25:y:2018:i:1:p:23-41
    as

    Download full text from publisher

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2370
    Download Restriction: no

    File URL: https://www.upo.es/revistas/index.php/RevMetCuant/article/view/2370/2709
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    scoring de crédito; riesgo de crédito; probabilidad de incumplimiento; análisis discriminante; regresión logística; redes neuronales; credit scoring; credit risk; default probability; discriminant analysis; logistic regression; neural networks;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • D14 - Microeconomics - - Household Behavior - - - Household Saving; Personal Finance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:25:y:2018:i:1:p:23-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.