Author
Abstract
El acceso a la información sobre las competencias demandadas por las empresas puede realizarse mediante un estudio prospectivo de las ofertas de empleo publicadas por los empleadores. Ahora bien, éstas incluyen una gran cantidad de datos de naturaleza cuantitativa y cualitativa, pero principalmente de carácter textual, por lo que han de ser analizadas con un enfoque apropiado para obtener un conocimiento detallado de competencias en determinadas áreas y perfiles profesionales. El objetivo de este trabajo es proporcionar evidencia empírica de las competencias requeridas a los profesionales del área de recursos humanos tanto a nivel general como a nivel de diferentes perfiles de puestos dentro del área. La identificación de sus competencias se realiza mediante la aplicación de métodos estadísticos a textos procesados automáticamente, lo cual prescinde de categorizaciones previas de las competencias con el fin de preservar los textos en su formato original. El estudio se realiza a partir del corpus textual Competencias Soft, construido mediante la recopilación de cientos de ofertas de empleo para profesionales del área, publicadas por reclutadores o empleadores directos en el mercado de trabajo español. Después de un proceso de homogeneización y lematización del corpus textual, se han extraído los términos clave de las competencias soft en Recursos Humanos, determinando así las competencias globales más solicitadas. Asimismo, la combinación de la información textual sobre las competencias requeridas con los datos cualitativos referentes a categorías de puestos ha permitido determinar los textos modales y esbozar las competencias ligadas a perfiles profesionales específicos. Finalmente, la visualización de las asociaciones entre ciertas competencias y determinados puestos se ha realizado mediante el Análisis de Correspondencias de una tabla léxica agregada. || Access to information on competencies demanded by companies may be performed by a prospective study of job offers posted by employers. But, these include a large amount of quantitative and qualitative but mainly textual data, so an appropriate approach should be chosen in order to obtain a detailed knowledge of competencies in certain areas and professional profiles. The aim of this paper is to provide empirical evidence of the competencies required to HR professionals both generally and in terms of different job profiles in this area. The identification of competencies is accomplished by the application of statistical methods to automatically processed texts, which dispenses with previous categorization of competences in order to preserve the texts in their native format. The research is based on a textual corpus on `Soft Competencies', which has been built from hundreds of job offers for HR professionals, posted by either recruitment consultants or direct employers within the labor Spanish market. After a process of standardization and lemmatization of the textual corpus, the key terms on HR soft competencies has been drawn and thus the overall most requested competencies. Likewise, combining the textual information about competencies with qualitative data concerning job profiles, modal texts may be determined and different competency profiles can be outlined. Finally, the visualization of the associations between soft competencies and HR job profiles has been carried out by means of a Correspondence Analysis of an aggregated lexical table.
Suggested Citation
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pab:rmcpee:v:16:y:2013:i:1:p:143-164. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Publicación Digital - UPO (email available below). General contact details of provider: https://edirc.repec.org/data/dmupoes.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.