IDEAS home Printed from https://ideas.repec.org/a/oup/restud/v90y2023i5p2326-2369..html
   My bibliography  Save this article

Learning from Neighbours about a Changing State

Author

Listed:
  • Krishna Dasaratha
  • Benjamin Golub
  • Nir Hak

Abstract

Agents learn about a changing state using private signals and their neighbours’ past estimates of the state. We present a model in which Bayesian agents in equilibrium use neighbours’ estimates simply by taking weighted sums with time-invariant weights. The dynamics thus parallel those of the tractable DeGroot model of learning in networks, but arise as an equilibrium outcome rather than a behavioural assumption. We examine whether information aggregation is nearly optimal as neighbourhoods grow large. A key condition for this is signal diversity: each individual’s neighbours have private signals that not only contain independent information, but also have sufficiently different distributions. Without signal diversity—e.g. if private signals are i.i.d.—learning is suboptimal in all networks and highly inefficient in some. Turning to social influence, we find it is much more sensitive to one’s signal quality than to one’s number of neighbours, in contrast to standard models with exogenous updating rules.

Suggested Citation

  • Krishna Dasaratha & Benjamin Golub & Nir Hak, 2023. "Learning from Neighbours about a Changing State," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(5), pages 2326-2369.
  • Handle: RePEc:oup:restud:v:90:y:2023:i:5:p:2326-2369.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/restud/rdac077
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abhijit Banerjee & Olivier Compte, 2024. "Consensus and Disagreement: Information Aggregation under (Not So) Naive Learning," Journal of Political Economy, University of Chicago Press, vol. 132(8), pages 2790-2829.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:restud:v:90:y:2023:i:5:p:2326-2369.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/restud .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.