IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v22y2024i3p575-604..html
   My bibliography  Save this article

How Does Post-Earnings Announcement Sentiment Affect Firms’ Dynamics? New Evidence from Causal Machine Learning

Author

Listed:
  • Francesco Audrino
  • Jonathan Chassot
  • Chen Huang
  • Michael Knaus
  • Michael Lechner
  • Juan-Pablo Ortega

Abstract

We revisit the role played by sentiment extracted from news articles related to earnings announcements as a driver of firms’ return, volatility, and trade volume dynamics. To this end, we apply causal machine learning on the earnings announcements of a wide cross-section of U.S. companies. This approach allows us to investigate firms’ price and volume reactions to different types of post-earnings announcement sentiment (positive, negative, and mixed sentiments) under various underlying macroeconomic, financial, and aggregated investors’ moods in a properly defined causal framework. Our empirical results support the presence of (i) economically sizable differences in the effects among sentiment types that are mostly of a non-linear nature depending on the underlying economic and financial conditions; (ii) a leverage effect in sentiment where reactions are (on average) larger for negative sentiment; and (iii) investors’ underreaction to news. In particular, we show that the difference in the average causal effects of the sentiment’s types is larger and more relevant when the general macroeconomic conditions are worse, the investors are pessimist about the behavior of the market and/or its uncertainty is higher, and in market regimes characterized by high stocks’ liquidity.

Suggested Citation

  • Francesco Audrino & Jonathan Chassot & Chen Huang & Michael Knaus & Michael Lechner & Juan-Pablo Ortega, 2024. "How Does Post-Earnings Announcement Sentiment Affect Firms’ Dynamics? New Evidence from Causal Machine Learning," Journal of Financial Econometrics, Oxford University Press, vol. 22(3), pages 575-604.
  • Handle: RePEc:oup:jfinec:v:22:y:2024:i:3:p:575-604.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbac018
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    causal machine learning; heterogeneity analysis; modified causal forest; post-earnings announcement drift; volatility; and volume; sentiment;
    All these keywords.

    JEL classification:

    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G41 - Financial Economics - - Behavioral Finance - - - Role and Effects of Psychological, Emotional, Social, and Cognitive Factors on Decision Making in Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:22:y:2024:i:3:p:575-604.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.