IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v20y2022i1p105-138..html
   My bibliography  Save this article

Bayesian Semi-Parametric Realized Conditional Autoregressive Expectile Models for Tail Risk Forecasting
[On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters of a Discontinuous Density Function]

Author

Listed:
  • Richard Gerlach
  • Chao Wang

Abstract

A new model framework called Realized Conditional Autoregressive Expectile is proposed, whereby a measurement equation is added to the conventional Conditional Autoregressive Expectile model. A realized measure acts as the dependent variable in the measurement equation, capturing the contemporaneous dependence between it and the latent conditional expectile; it also drives the expectile dynamics. The usual grid search and asymmetric least squares optimization, to estimate the expectile level and parameters, suffers from convergence issues leading to inefficient estimation. This article develops an alternative random walk Metropolis stochastic target search method, incorporating an adaptive Markov Chain Monte Carlo sampler, which leads to improved accuracy in estimation of the expectile level and model parameters. The sampling properties of this method are assessed via a simulation study. In a forecast study applied to several market indices and asset return series, one-day-ahead Value-at-Risk and Expected Shortfall forecasting results favor the proposed model class.

Suggested Citation

  • Richard Gerlach & Chao Wang, 2022. "Bayesian Semi-Parametric Realized Conditional Autoregressive Expectile Models for Tail Risk Forecasting [On the Estimation of Production Frontiers: Maximum Likelihood Estimation of the Parameters o," Journal of Financial Econometrics, Oxford University Press, vol. 20(1), pages 105-138.
  • Handle: RePEc:oup:jfinec:v:20:y:2022:i:1:p:105-138.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbaa002
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Taylor, James W., 2022. "Forecasting Value at Risk and expected shortfall using a model with a dynamic omega ratio," Journal of Banking & Finance, Elsevier, vol. 140(C).
    2. Santos, Douglas G. & Candido, Osvaldo & Tófoli, Paula V., 2022. "Forecasting risk measures using intraday and overnight information," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).

    More about this item

    Keywords

    expectile; realized measure; Markov Chain Monte Carlo; Value-at-Risk; Expected Shortfall;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:20:y:2022:i:1:p:105-138.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.