Deep Learning for Mortgage Risk
[The Subprime Virus]
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carl Remlinger & Bri`ere Marie & Alasseur Cl'emence & Joseph Mikael, 2021. "Expert Aggregation for Financial Forecasting," Papers 2111.15365, arXiv.org, revised Jul 2023.
- Tobias Berg & Andreas Fuster & Manju Puri, 2022.
"FinTech Lending,"
Annual Review of Financial Economics, Annual Reviews, vol. 14(1), pages 187-207, November.
- Berg, Tobias & Puri, Manju, 2021. "FinTech Lending," CEPR Discussion Papers 16668, C.E.P.R. Discussion Papers.
- Tobias Berg & Andreas Fuster & Manju Puri, 2021. "FinTech Lending," Swiss Finance Institute Research Paper Series 21-72, Swiss Finance Institute.
- Tobias Berg & Andreas Fuster & Manju Puri, 2021. "FinTech Lending," NBER Working Papers 29421, National Bureau of Economic Research, Inc.
- Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
- Andreas Fuster & David Lucca & James Vickery, 2023.
"Mortgage-backed securities,"
Chapters, in: Refet S. Gürkaynak & Jonathan H. Wright (ed.), Research Handbook of Financial Markets, chapter 15, pages 331-357,
Edward Elgar Publishing.
- Andreas Fuster & David O. Lucca & James Vickery, 2022. "Mortgage-Backed Securities," Staff Reports 1001, Federal Reserve Bank of New York.
- Fuster, Andreas & Lucca, David & Vickery, James, 2022. "Mortgage-Backed Securities," CEPR Discussion Papers 16989, C.E.P.R. Discussion Papers.
- Andreas Fuster & David O. Lucca & James I. Vickery, 2022. "Mortgage-Backed Securities," Swiss Finance Institute Research Paper Series 22-13, Swiss Finance Institute.
- Chao Zhang & Yihuang Zhang & Mihai Cucuringu & Zhongmin Qian, 2022. "Volatility forecasting with machine learning and intraday commonality," Papers 2202.08962, arXiv.org, revised Feb 2023.
- Hanauer, Matthias X. & Kalsbach, Tobias, 2023. "Machine learning and the cross-section of emerging market stock returns," Emerging Markets Review, Elsevier, vol. 55(C).
- Victor Duarte & Diogo Duarte & Dejanir H. Silva, 2024. "Machine Learning for Continuous-Time Finance," CESifo Working Paper Series 10909, CESifo.
- Hoang, Daniel & Wiegratz, Kevin, 2022. "Machine learning methods in finance: Recent applications and prospects," Working Paper Series in Economics 158, Karlsruhe Institute of Technology (KIT), Department of Economics and Management.
- Margherita Doria & Elisa Luciano & Patrizia Semeraro, 2022. "Machine learning techniques in joint default assessment," Papers 2205.01524, arXiv.org, revised Sep 2023.
- Congjin Zhou & Guojing Wang & Yinghui Dong & Pin Wang, 2024. "The Valuation at Origination of Mortgages with Full Prepayment and Default Risks," Methodology and Computing in Applied Probability, Springer, vol. 26(2), pages 1-26, June.
- Andreas Fuster & Paul Goldsmith‐Pinkham & Tarun Ramadorai & Ansgar Walther, 2022.
"Predictably Unequal? The Effects of Machine Learning on Credit Markets,"
Journal of Finance, American Finance Association, vol. 77(1), pages 5-47, February.
- Goldsmith-Pinkham, Paul & Walther, Ansgar, 2017. "Predictably Unequal? The Effects of Machine Learning on Credit Markets," CEPR Discussion Papers 12448, C.E.P.R. Discussion Papers.
- Lirong Gan & Wei-han Liu, 2024. "Option Pricing Based on the Residual Neural Network," Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1327-1347, April.
More about this item
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
- G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:19:y:2021:i:2:p:313-368.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.