IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v17y2019i1p91-117..html
   My bibliography  Save this article

Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series

Author

Listed:
  • Antonello Maruotti
  • Antonio Punzo
  • Luca Bagnato

Abstract

We introduce multivariate models for the analysis of stock market returns. Our models are developed under hidden Markov and semi-Markov settings to describe the temporal evolution of returns, whereas the marginal distribution of returns is described by a mixture of multivariate leptokurtic-normal (LN) distributions. Compared to the normal distribution, the LN has an additional parameter governing excess kurtosis and this allows us a better fit to both the distributional and dynamic properties of daily returns. We outline an expectation maximization algorithm for maximum likelihood estimation which exploits recursions developed within the hidden semi-Markov literature. As an illustration, we provide an example based on the analysis of a bivariate time series of stock market returns.

Suggested Citation

  • Antonello Maruotti & Antonio Punzo & Luca Bagnato, 2019. "Hidden Markov and Semi-Markov Models with Multivariate Leptokurtic-Normal Components for Robust Modeling of Daily Returns Series," Journal of Financial Econometrics, Oxford University Press, vol. 17(1), pages 91-117.
  • Handle: RePEc:oup:jfinec:v:17:y:2019:i:1:p:91-117.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nby019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luca Bagnato & Antonio Punzo, 2021. "Unconstrained representation of orthogonal matrices with application to common principal components," Computational Statistics, Springer, vol. 36(2), pages 1177-1195, June.
    2. Antonio Punzo & Salvatore Ingrassia & Antonello Maruotti, 2021. "Multivariate hidden Markov regression models: random covariates and heavy-tailed distributions," Statistical Papers, Springer, vol. 62(3), pages 1519-1555, June.
    3. Enrique Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2021. "Backtesting expected shortfall for world stock index ETFs with extreme value theory and Gram–Charlier mixtures," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(3), pages 4163-4189, July.
    4. Antonello Maruotti & Antonio Punzo, 2021. "Initialization of Hidden Markov and Semi‐Markov Models: A Critical Evaluation of Several Strategies," International Statistical Review, International Statistical Institute, vol. 89(3), pages 447-480, December.
    5. Massimo Guidolin & Manuela Pedio, 2022. "Switching Coefficients or Automatic Variable Selection: An Application in Forecasting Commodity Returns," Forecasting, MDPI, vol. 4(1), pages 1-32, February.
    6. Maruotti, Antonello & Petrella, Lea & Sposito, Luca, 2021. "Hidden semi-Markov-switching quantile regression for time series," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).

    More about this item

    Keywords

    daily returns; elliptical distributions; EM algorithm; hidden Markov model; hidden semi-Markov model; kurtosis; multivariate time series;
    All these keywords.

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:17:y:2019:i:1:p:91-117.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.