IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v16y2018i4p526-569..html
   My bibliography  Save this article

Limit of Random Measures Associated with the Increments of a Brownian Semimartingale

Author

Listed:
  • Jean Jacod

Abstract

We consider a Brownian semimartingale X (the sum of a stochastic integral w.r.t. a Brownian motion and an integral w.r.t. Lebesgue measure), and for each n an increasing sequence T(n, i) of stopping times and a sequence of positive ℱT(n,i)-measurable variables Δ(n,i) such that S(n,i):=T(n,i)+Δ(n,i)≤T(n,i+1). We are interested in the limiting behavior of processes of the form Utn(g)=δn∑i:S(n,i)≤t[g(T(n,i),ξin)−αin(g)], where δn is a normalizing sequence tending to 0 and ξin=Δ(n,i)−1/2(XS(n,i)−XT(n,i)) and αin(g) are suitable centering terms and g is some predictable function of (ω,t,x). Under rather weak assumptions on the sequences T(n, i) as n goes to infinity, we prove that these processes converge (stably) in law to the stochastic integral of g w.r.t. a random measure B which is, conditionally on the path of X, a Gaussian random measure. We give some applications to rates of convergence in discrete approximations for the p-variation processes and local times.

Suggested Citation

  • Jean Jacod, 2018. "Limit of Random Measures Associated with the Increments of a Brownian Semimartingale," Journal of Financial Econometrics, Oxford University Press, vol. 16(4), pages 526-569.
  • Handle: RePEc:oup:jfinec:v:16:y:2018:i:4:p:526-569.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbx021
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    2. Li, M. Z. & Linton, O., 2021. "Robust Estimation of Integrated and Spot Volatility," Cambridge Working Papers in Economics 2115, Faculty of Economics, University of Cambridge.
    3. Cheng, Mingmian & Swanson, Norman R. & Yang, Xiye, 2021. "Forecasting volatility using double shrinkage methods," Journal of Empirical Finance, Elsevier, vol. 62(C), pages 46-61.

    More about this item

    Keywords

    limit theorems; triangular arrays; high frequency;
    All these keywords.

    JEL classification:

    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:16:y:2018:i:4:p:526-569.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.