IDEAS home Printed from https://ideas.repec.org/a/oup/jfinec/v14y2016i2p229-247..html
   My bibliography  Save this article

Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference

Author

Listed:
  • A. Ronald Gallant

Abstract

Often a structural model implies that certain moment functions expressed in terms of data and model parameters follow a distribution. An assertion that moment functions follow a distribution logically implies a distribution on the arguments of the moment functions. This fact would appear to permit Bayesian inference on model parameters. The classic example is an assertion that the sample mean centered at a parameter and scaled by its standard error has Student’s t-distribution followed by an assertion that the sample mean plus and minus a critical value times the standard error is a Bayesian credibility interval for the parameter. This article studies the logic of such assertions. The main finding is that if the moment functions have one of the properties of a pivotal, then the assertion of a distribution on moment functions coupled with a proper prior does permit Bayesian inference. Without the semi-pivotal condition, the assertion of a distribution for moment functions either partially or completely specifies the prior. In this case, Bayesian inference may or may not be practicable depending on how much of the distribution of the constituents remains indeterminate after imposition of a noncontradictory prior. An asset pricing example that uses data from the U.S. economy illustrates the ideas.

Suggested Citation

  • A. Ronald Gallant, 2016. "Reflections on the Probability Space Induced by Moment Conditions with Implications for Bayesian Inference," Journal of Financial Econometrics, Oxford University Press, vol. 14(2), pages 229-247.
  • Handle: RePEc:oup:jfinec:v:14:y:2016:i:2:p:229-247.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/jjfinec/nbv008
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhong, Guang-Yan & Li, Jiang-Cheng & Jiang, George J. & Li, Hai-Feng & Tao, Hui-Ming, 2018. "The time delay restraining the herd behavior with Bayesian approach," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 335-346.
    2. Gael M. Martin & David T. Frazier & Christian P. Robert, 2020. "Computing Bayes: Bayesian Computation from 1763 to the 21st Century," Monash Econometrics and Business Statistics Working Papers 14/20, Monash University, Department of Econometrics and Business Statistics.
    3. Fulop, Andras & Heng, Jeremy & Li, Junye & Liu, Hening, 2022. "Bayesian estimation of long-run risk models using sequential Monte Carlo," Journal of Econometrics, Elsevier, vol. 228(1), pages 62-84.
    4. Gallant, A. Ronald, 2022. "Nonparametric Bayes subject to overidentified moment conditions," Journal of Econometrics, Elsevier, vol. 228(1), pages 27-38.
    5. Gallant, A. Ronald & Giacomini, Raffaella & Ragusa, Giuseppe, 2017. "Bayesian estimation of state space models using moment conditions," Journal of Econometrics, Elsevier, vol. 201(2), pages 198-211.
    6. Ronald Gallant, A. & Tauchen, George, 2018. "Exact Bayesian moment based inference for the distribution of the small-time movements of an Itô semimartingale," Journal of Econometrics, Elsevier, vol. 205(1), pages 140-155.
    7. Isaiah Andrews & Anna Mikusheva, 2022. "Optimal Decision Rules for Weak GMM," Econometrica, Econometric Society, vol. 90(2), pages 715-748, March.
    8. A. Ronald Gallant, 2020. "Complementary Bayesian method of moments strategies," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 422-439, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:jfinec:v:14:y:2016:i:2:p:229-247.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://edirc.repec.org/data/sofieea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.