IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v19y2024ip594-602..html
   My bibliography  Save this article

Optimization and research of smart grid load forecasting model based on deep learning

Author

Listed:
  • Dong Zhang

Abstract

In order to accurately grasp the power consumption of the market and deeply understand the operation law of the power market, the power grid must achieve accurate power load prediction by studying the supply and demand of the power system and the change law. Therefore, a smart grid load prediction analysis method based on deep learning is proposed. Firstly, DenseNet network is used to extract features, so as to achieve feature reuse and improve efficiency. Then, combining the long short-term memory (LSTM) network based on attention mechanism, a combined model DenseNet–AM–LSTM is proposed to solve the long-term dependence problem of feature extraction. After using batch normalization, the model can use higher learning rate to improve the training speed of the model and obtain the best prediction accuracy of the model. The experimental results show that this method can accurately predict the power load, and the accuracy is higher than the current popular methods, and it is expected to become an important technical support for solving the core problems of smart grid.

Suggested Citation

  • Dong Zhang, 2024. "Optimization and research of smart grid load forecasting model based on deep learning," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 594-602.
  • Handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:594-602.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctae023
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:594-602.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.