IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v19y2024ip526-533..html
   My bibliography  Save this article

Lithium-ion battery-pumped storage control strategy for smoothing wind-photovoltaic power fluctuation

Author

Listed:
  • Lile Wu
  • Huanran Wang
  • Zutian Cheng
  • Lei Bai
  • Helei Li

Abstract

Wind, as well as photovoltaic (PV), is widely used. Like loads, its power cannot be predicted, which results in the grid having to bear the power imbalance between wind-PV and loads, and substantial power fluctuations are not tolerated. Hybrid energy storage systems (HESS) containing multiple storage methods are considered effective solutions. In this paper, pumped storage and lithium-ion battery storage are fully considered, as they are supposed to have excellent performance and are highly complementary. We categorize the power imbalance into low, medium, and high according to the magnitude of the power imbalance. When the power fluctuation is low, the battery dominates. In contrast, the pumped storage dominates when the power fluctuation is high. Most importantly, when the power fluctuation is medium, we utilize an optimized first-order low-pass filter to allocate the power between the pumped storage and the lithium-ion battery. We change the filtering time in real-time according to the battery’s state of charge (SOC) to reasonably allocate the power between the pumped storage and the lithium-ion battery and ensure the SOC fluctuates within a reasonable range. This paper confirms the feasibility of the proposed strategy, where the pumped storage power fluctuates very little, in contrast, the battery power fluctuates significantly, and the SOC is always within the set reasonable range. Most importantly, the strategy proposed in this paper is straightforward to implement, which is crucial for engineering applications.

Suggested Citation

  • Lile Wu & Huanran Wang & Zutian Cheng & Lei Bai & Helei Li, 2024. "Lithium-ion battery-pumped storage control strategy for smoothing wind-photovoltaic power fluctuation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 19, pages 526-533.
  • Handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:526-533.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctad141
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:19:y:2024:i::p:526-533.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.