IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v18y2023ip167-174..html
   My bibliography  Save this article

Daily consumption monitoring method of photovoltaic microgrid based on genetic wavelet neural network

Author

Listed:
  • ShuMing Wang
  • XiaoHui Yuan
  • Qian Huang
  • AnQing Chen
  • HanBin Ma
  • Xiang Xu

Abstract

In order to comprehensively monitor the daily consumption of photovoltaic power and power generation of photovoltaic microgrid, a daily consumption monitoring method of photovoltaic microgrid based on genetic wavelet neural network is proposed to reduce the relative error of daily consumption monitoring. Considering the power generation forms of various units such as wind power, thermal power, hydropower and photovoltaic power generation, the upper and lower limits of daily consumption of different units and the constraints of consumption calculation are analyzed to obtain the daily consumption of photovoltaic microgrid. On this basis, the daily consumption monitoring model of photovoltaic microgrid including multiple inputs and outputs is constructed by using Morlet wavelet function, and the power generation is calculated by wavelet neural network. The genetic algorithm is used to optimize the individual fitness of wavelet neural network through the training of the number of wavelet bases and related thresholds and weights, and to normalize the optimal individual fitness to realize the daily consumption monitoring of photovoltaic microgrid. The experiment shows that this method can monitor the actual photovoltaic power in sunny weather, and after 12 o’clock, the photovoltaic power gradually drops below 30 kW. In cloudy weather, the actual photovoltaic power reaches its peak at around 12 o’clock, ~45–50 kW, and drops to about 10 kW at 17 o’clock. And the power generation in cloudy days is relatively low, and the power generation in rainy days is the lowest. When the relative humidity is 30%, the power generation increases rapidly and keeps at 8 kWh. When the relative humidity is 50%, the power generation gradually drops to 2 kWh. When the temperature is 20°C, the maximum radiation intensity is about 0.6 kW m2. When the temperature is 30°C, the maximum radiation intensity is greater than 0.8 kW m2. At 11:00 and 12:00, the power generation error is 0.02 kWh. In order to improve the monitoring accuracy of photovoltaic power and daily power generation of photovoltaic microgrid in different environments.

Suggested Citation

  • ShuMing Wang & XiaoHui Yuan & Qian Huang & AnQing Chen & HanBin Ma & Xiang Xu, 2023. "Daily consumption monitoring method of photovoltaic microgrid based on genetic wavelet neural network," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 18, pages 167-174.
  • Handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:167-174.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac141
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:18:y:2023:i::p:167-174.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.