IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip436-445..html
   My bibliography  Save this article

Numerical modeling of a novel two-stage linear refrigeration compressor
[Linear compressors for electronics cooling: energy recovery and its benefits]

Author

Listed:
  • Hao Shen
  • Zhaohua Li
  • Kun Liang
  • Xinwen Chen

Abstract

Linear compressors have started to apply in refrigeration owing to their oil-free operation, capacity modulation by variable stroke and higher seasonal efficiency. Nevertheless, linear compressors are subject to a high seal leakage loss and piston offset (drift), particularly at high pressure ratios. Meanwhile, there is a reduction in the accuracy of resonant frequency prediction due to very nonlinear gas spring at high pressure ratios, leading to a reduction in the compressor efficiency. Two-stage operation is considered as a feasible solution to the aforementioned issues due to the lower pressure ratio for each stage. A numerical model of two-stage compression system using linear compressors is presented in this study to investigate the system performance under various operating conditions. The proposed numerical model consists of a thermodynamic sub-model, a piston dynamic sub-model and a reed valve dynamic sub-model. Experiments are also conducted based on a refrigeration system with two linear compressors connected in parallel to validate the proposed model. The mean absolute percentage errors of the predicted mass flow rate and power input are 2.47% and 8.49%, respectively. The modeling results show that the coefficient of performance is 5.5 for a two-stage compression system and 2.0 for a single-stage compression system while the condenser temperature and evaporator temperature are 50°C and −23°C, respectively. The two-stage compression system offers superior performance to the single-stage system.

Suggested Citation

  • Hao Shen & Zhaohua Li & Kun Liang & Xinwen Chen, 2022. "Numerical modeling of a novel two-stage linear refrigeration compressor [Linear compressors for electronics cooling: energy recovery and its benefits]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 436-445.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:436-445.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac021
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Kun & Stone, Richard & Davies, Gareth & Dadd, Mike & Bailey, Paul, 2014. "Modelling and measurement of a moving magnet linear compressor performance," Energy, Elsevier, vol. 66(C), pages 487-495.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossein Asgharian & Florin Iov & Samuel Simon Araya & Thomas Helmer Pedersen & Mads Pagh Nielsen & Ehsan Baniasadi & Vincenzo Liso, 2023. "A Review on Process Modeling and Simulation of Cryogenic Carbon Capture for Post-Combustion Treatment," Energies, MDPI, vol. 16(4), pages 1-35, February.
    2. Zhiping Zhang & Hongye Qiu & Dantong Li & Zhilong He & Ziwen Xing & Lijian Wu, 2022. "Development of Ultra-High-Efficiency Medium-Capacity Chillers with Two-Stage Compression and Interstage Vapor Injection Technologies," Energies, MDPI, vol. 15(24), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xue, Renjun & Tan, Jun & Zhao, Bangjian & Zhao, Yongjiang & Tan, Han & Wu, Shiguang & Zhai, Yujia & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic characteristics of a single-stage stirling-type pulse tube cryocooler capable of 1220 W at 77 K with two cold fingers driven by one linear compressor," Energy, Elsevier, vol. 278(PB).
    2. Wu, Shiguang & Zhao, Bangjian & Tan, Jun & Zhao, Yongjiang & Zhai, Yujia & Xue, Renjun & Tan, Han & Ma, Dong & Wu, Dirui & Dang, Haizheng, 2023. "Thermodynamic study on throttling process of Joule-Thomson cooler to improve helium liquefaction performance between 2 K and 4 K," Energy, Elsevier, vol. 277(C).
    3. Liang, Kun, 2018. "Analysis of oil-free linear compressor operated at high pressure ratios for household refrigeration," Energy, Elsevier, vol. 151(C), pages 324-331.
    4. Chengzhan Li & Jian Sun & Huiming Zou & Jinghui Cai & Tingting Zhu, 2023. "Experimental Analysis of the Discharge Valve Movement of the Oil-Free Linear Compressor in the Refrigeration System," Sustainability, MDPI, vol. 15(7), pages 1-15, March.
    5. Li, Chengzhan & Sun, Jian & Zou, Huiming & Cai, Jinghui & Zhu, Tingting, 2023. "Characteristic analysis and energy efficiency of an oil-free dual-piston linear compressor for household refrigeration with various conditions," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:436-445.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.