IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v17y2022ip19-43..html
   My bibliography  Save this article

The fabrication and testing of a self-sensing MWCNT nanocomposite sensor for oil leak detection
[Environmental decision support systems for monitoring small scale oil spills: existing solutions, best practices and current challenges]

Author

Listed:
  • Mohammed Al-Bahrani
  • Aissa Bouaissi
  • Alistair Cree

Abstract

Oil spillage, due to either direct or indirect accidents, can cause major environmental and economic issues if not detected and remedied immediately. In this study, the unique properties of carbon nanotubes have shown a substantial sensing capability for such a purpose when incorporated into a nanostructured composite material. A high-efficiency self-sensing nanocomposite sensor was fabricated by inserting highly conductive multi-walled carbon nanotubes (MWCNTs) into an elastomeric polymer substrate. The microstructure of the nanocomposite sensor was studied using scanning electronic microscopy and Raman spectroscopy. The response rate of the sensor was evaluated against different MWCNT concentrations, geometrical thickness and applied strains (causing by stretching). The results indicated that the response rate of the sensor (β) decreased with increasing MWCNT concentration and showed the strongest response when the sensor contained a 1.0 wt % concentration of MWCNTs. Additionally, it was found that the response time of the self-sensing nanocomposite sensors decreased in keeping with decreases in the sensor thickness. Moreover, when the sensor was subjected to strain, while immersed in an oil bath, it was found that the response rate (β) of the unstretched self-sensing nanocomposite sensor was significantly lower than that of the stretched one. The sensors given a 3% applied strain presented a response rate (β) ≈ 7.91 times higher than of the unstretched one. The self-sensing nanocomposite sensor described here shows good potential to be employed for oil leakage detection purposes due to its effective self-damage sensing capability and high sensing efficiency and low power consumption.

Suggested Citation

  • Mohammed Al-Bahrani & Aissa Bouaissi & Alistair Cree, 2022. "The fabrication and testing of a self-sensing MWCNT nanocomposite sensor for oil leak detection [Environmental decision support systems for monitoring small scale oil spills: existing solutions, be," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 19-43.
  • Handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:19-43.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctac044
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:17:y:2022:i::p:19-43.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.