IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v16y2021i2p620-627..html
   My bibliography  Save this article

Mathematical evaluation of sloped solar chimney power plant for power generation in different regions of Nepal
[Solar chimney cycle analysis with system loss and solar collector performance]

Author

Listed:
  • Suresh Baral

Abstract

Sloped solar chimney power plant (SSCPP) could be one of the appropriate technologies for powering Nepalese communities. The main components of the plant are chimney, collector and power-generating unit. In this study, the mathematical evaluation of the SSCPP has been conducted for the estimation of the power generation in Nepalese context. For the analysis, the mathematical models have been developed from the governing equations. The parameters such as chimney height and radius, collector radius, ambient temperature and solar insolation have been taken as inputs for simulation of the overall system. The output parameters such as overall system efficiency, chimney efficiency, air velocity, power output from the turbine and electrical power from the proposed system have been evaluated. The results showed that power developed by air, turbine power and electrical power is 120, 66 and 44 kW, respectively. The developed power is estimated when the height and the radius of the chimney were 190 and 5 m, respectively. It is seen that ambient temperature and velocity of air also play an important role in the power generation. The performance influencing the power output based on turbine pressure ratio, thermal conductivity and specific heat capacity of soil and the mass flow rate have also been estimated. Besides, the solar insolation data were taken for five different regions of Nepal to find the power generation and collector efficiency.

Suggested Citation

  • Suresh Baral, 2021. "Mathematical evaluation of sloped solar chimney power plant for power generation in different regions of Nepal [Solar chimney cycle analysis with system loss and solar collector performance]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 620-627.
  • Handle: RePEc:oup:ijlctc:v:16:y:2021:i:2:p:620-627.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctaa094
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:16:y:2021:i:2:p:620-627.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.