IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v16y2021i2p577-591..html
   My bibliography  Save this article

Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: a case study
[Towards green cities in developing countries: Egyptian new cities as a case study]

Author

Listed:
  • Nima Shamsapour
  • Ahmad Hajinezhad
  • Younes Noorollahi

Abstract

Today both the economic growth and expansion of urbanization have increased community access to private cars. Thus, the urban transportation has become a critical part of energy consumption and greenhouse gas emissions. The excessive dependence of urban transportation on high-emission fuels is the main obstacle to develop a low-carbon transport. Meanwhile, natural gas is a bridge fuel to develop a low-emission transport. To the best of our knowledge, there has been little attention towards the association between the development of natural gas-fueled vehicles and the CO2 emission. Therefore, the problem we studied is the role of compressed natural gas (CNG) vehicles in replacing high-emission fuels. In this study, we aimed to study this association by selecting the system dynamics approach due to the complexities of the social-economic system of transportation. In this modeling, different subsystems of the transport fleet were employed including CNG vehicles and urban transportation subsystems. Iran has used CNG as an alternative fuel in the transportation sector, making it one of the three leading countries in the use of natural gas in the urban transportation system. Our case study is focused on Tehran, which is the capital and the largest city of Iran.In this paper, we considered several scenarios to replace the gasoline fuel in the private car sector and taxis and diesel fuel in the bus fleet with natural CNG fuel. The results show that the replacement of CNG fuel with high-emission fuels can have a significant effect on reducing CO2 emissions. In the synthetic scenario, CO2 emission will be decreased by 11.42% in 2030, as compared to the business as usual (BAU) scenario in this year. According to Iran’s commitment to the Paris Agreement, the emission of CO2 in Iran should normally be reduced by 4% in 2030, as compared to its amount in the BAU scenario. Therefore, Iran can easily fulfill its obligations in the urban transport sector only by replacing gasoline and diesel fuel with CNG.

Suggested Citation

  • Nima Shamsapour & Ahmad Hajinezhad & Younes Noorollahi, 2021. "Developing a system dynamics approach for CNG vehicles for low-carbon urban transport: a case study [Towards green cities in developing countries: Egyptian new cities as a case study]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 577-591.
  • Handle: RePEc:oup:ijlctc:v:16:y:2021:i:2:p:577-591.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctaa085
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:16:y:2021:i:2:p:577-591.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.