IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v16y2021i1p98-113..html
   My bibliography  Save this article

Performance investigation of a micro-channel flat separated loop heat pipe system for data centre cooling
[Comparison of sustainable information technologies for companies]

Author

Listed:
  • Menglong Hu
  • Liang Luo
  • Ali Badiei
  • Fucheng Chen
  • Siming Zheng
  • Zhangyuan Wang
  • Xudong Zhao

Abstract

This paper investigates a novel micro-channel flat separated loop heat pipe system for cooling the information technology equipment in the data centres through theoretical and experimental analysis and by assessing the impact of the inlet water temperature on system performance. A computer model is developed to simulate the steady-state performance of the micro-channel flat separated loop heat pipe system. After comparing the experimental and modelling results, the new and conventional system under the same working conditions, the model is validated yielding high accuracy in predicting the performance of the micro-channel flat separated loop heat pipe system with recorded error being limited to 2.16–8.97%. The new system has better performance than the conventional system. Under the operating conditions of heat load intensity of 1,000 W/m2, water flow rate of 0.28 m3/h, refrigerant filling rate of 30%, ambient air temperature of 26°C, and evaporator and condenser height difference of 0.8 m, the performance of the system has been explored at inlet temperature from 15 to 24°C with increments of 3°C. The system’s averaged heat transfer efficiency was found to decrease with the increase in inlet temperature. This research provides valuable insight into the data centre information technology equipment cooling, which is of great significance for energy saving and environmentally friendly operation of data centres.

Suggested Citation

  • Menglong Hu & Liang Luo & Ali Badiei & Fucheng Chen & Siming Zheng & Zhangyuan Wang & Xudong Zhao, 2021. "Performance investigation of a micro-channel flat separated loop heat pipe system for data centre cooling [Comparison of sustainable information technologies for companies]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(1), pages 98-113.
  • Handle: RePEc:oup:ijlctc:v:16:y:2021:i:1:p:98-113.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctaa036
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    2. Wang, Xianling & Yang, Jingxuan & Wen, Qiaowei & Shittu, Samson & Liu, Guangming & Qiu, Zining & Zhao, Xudong & Wang, Zhangyuan, 2022. "Visualization study of a flat confined loop heat pipe for electronic devices cooling," Applied Energy, Elsevier, vol. 322(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:16:y:2021:i:1:p:98-113.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.