IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v14y2019i4p500-507..html
   My bibliography  Save this article

Experimental investigation and performance analysis of an Organic Rankine Cycle for low-temperature heat to electricity generation

Author

Listed:
  • Lili Wei
  • Zhenjun Ma
  • Xuemei Gong
  • Xiujuan Guo

Abstract

This paper presents experimental investigation of low-temperature heat to electricity generation system based on Organic Rankine Cycle (ORC) using R152a as the working fluid. Both energy efficiency and exergy efficiency were analyzed based on the experiments. Although energy efficiency was low to 5.0% when the evaporating and cooling temperatures were 65°C and 11°C, respectively, the exergy efficiency reached 25%, which showed great competitiveness among low-temperature heat utilization technologies. To reveal the energy recovery proportion from the waste heat, both energy extraction efficiency and exergy extraction efficiency as well as energy and exergy loss paths were analyzed. When the heat source was 65°C, 14.9% of the maximum possible thermal energy in the heat source was absorbed by the organic working fluid, and 10.7% was transferred to the cooling medium. The power output contributed 0.64%. A total of 1.8% of the exergy in the heat stream flowed to the cooling medium. The start-up work takes dramatically 0.16% and 1.7% of energy and exergy, respectively. Other energy and exergy loss occurs due to the irreversibility of the heat transfer process and expansion process. Cascade ORC system could enlarge the temperature difference of the heat stream and raise the power output. However, the energy efficiency of the multi-stage ORC system is lower than single-stage system, since there was a downward trend of the temperature of heat source for the latter stage. ORC cycle can lower the temperature of heat source to 45°C.

Suggested Citation

  • Lili Wei & Zhenjun Ma & Xuemei Gong & Xiujuan Guo, 2019. "Experimental investigation and performance analysis of an Organic Rankine Cycle for low-temperature heat to electricity generation," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(4), pages 500-507.
  • Handle: RePEc:oup:ijlctc:v:14:y:2019:i:4:p:500-507.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctz037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zafer Utlu & Mert Tolon & Arif Karabuga, 2021. "Modelling of energy and exergy analysis of ORC integrated systems in terms of sustainability by applying artificial neural network [Thermodynamic performance evaluation of a novel solar energy base," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(1), pages 156-164.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:14:y:2019:i:4:p:500-507.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.