IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v14y2019i1p76-82..html
   My bibliography  Save this article

Low-cost automatic multi-axis solar tracking system for performance improvement in vertical support solar panels using Arduino board

Author

Listed:
  • Timothy Laseinde
  • Dominic Ramere

Abstract

Solar irradiation is a green and sustainable renewable energy source which is largely harnessed through photovoltaic and thermal cell surfaces. It is one of the fastest growing clean power technologies with high-global growth figures, due to its simplicity, affordability and abundant availability. Solar power systems is one of the fastest growing interventions augmenting fossil power and its application is now expanding beyond domestic utilization to commercial and industrial dependence. Due to continuous change in the position of the sun together with other salient factors, only a fraction of the suns energy potential is harnessed. The paper is focused on sharing an optimization option that has effectively addressed a major gap experienced in conventional solar power system installation as applicable to light emitting diodes traffic light systems. The continuous movement of the sun limits maximum sun light irradiation absorption and solar trackers are practical solutions to this drawback. The high cost of solar trackers has however been the major limitation to their adoption. The Introduction of microcontroller-based solar tracking systems using Arduino board was found to be cost effective, and it improved the efficiency of the solar cells significantly. In the study, the maximum power point tracking algorithm was designed and developed using multiple-axis servo-motor feedback tracking system, which increased the efficiency of the solar panel array by 23.95%.

Suggested Citation

  • Timothy Laseinde & Dominic Ramere, 2019. "Low-cost automatic multi-axis solar tracking system for performance improvement in vertical support solar panels using Arduino board," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(1), pages 76-82.
  • Handle: RePEc:oup:ijlctc:v:14:y:2019:i:1:p:76-82.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/cty058
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kittisak Lohwanitchai & Daranee Jareemit, 2021. "Modeling Energy Efficiency Performance and Cost-Benefit Analysis Achieving Net-Zero Energy Building Design: Case Studies of Three Representative Offices in Thailand," Sustainability, MDPI, vol. 13(9), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:14:y:2019:i:1:p:76-82.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.