IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v14y2019i1p70-75..html
   My bibliography  Save this article

Development of a cooling load prediction model for air-conditioning system control of office buildings

Author

Listed:
  • Chengliang Fan
  • Yundan Liao
  • Yunfei Ding

Abstract

Building cooling load prediction is of critical importance for achieving energy saving of air-conditioning system in office buildings. It not only benefits the energy-efficiency of the air-conditioning system, but is also important for the system stability. Many techniques have been developed for building cooling load prediction. These methods are normally arranged into three categories: regression analysis, energy simulation and artificial intelligence. Among them, the regression analysis methods are simple in mechanism and much practical for real application. However, traditional regression models are not sufficient to manage multi-parameter dynamic changes, and the outliers in prediction has not been well considered, making the accuracy of cooling load prediction not satisfactory. To promote the feasibility of regression methods for cooling load prediction of office buildings, an efficient regression model based on sensitivity analysis and the traditional autoregressive with exogenous (ARX) model (named as improved ARX model) is proposed in this paper. The improved ARX model keeps the constitution of ARX model, but uses specified variables that selected by sensitivity analysis. The quadratic terms of vital variables are included to reduce the impact of system non-linearity. A least square method is used to get the weight coefficient matrix for model training. Comparison studies are used to evaluate the prediction accuracy of the improved ARX model. The proposed model will largely improve prediction accuracy and more adaptive for real applications in the perspective of optimal control for HVAC systems.

Suggested Citation

  • Chengliang Fan & Yundan Liao & Yunfei Ding, 2019. "Development of a cooling load prediction model for air-conditioning system control of office buildings," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 14(1), pages 70-75.
  • Handle: RePEc:oup:ijlctc:v:14:y:2019:i:1:p:70-75.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/cty057
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pedersen, Linda, 2007. "Use of different methodologies for thermal load and energy estimations in buildings including meteorological and sociological input parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 998-1007, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yiren & Zhao, Xiangyu & Qin, S. Joe, 2024. "Dynamically engineered multi-modal feature learning for predictions of office building cooling loads," Applied Energy, Elsevier, vol. 355(C).
    2. Kaneko, Naoya & Okazawa, Kazuki & Zhao, Dafang & Nishikawa, Hiroki & Taniguchi, Ittetsu & Murayama, Hiroyuki & Yura, Yoshinori & Okamoto, Masakazu & Catthoor, Francky & Onoye, Takao, 2024. "Non-intrusive thermal load disaggregation and forecasting for effective HVAC systems," Applied Energy, Elsevier, vol. 367(C).
    3. Meng Wang & Junqi Yu & Meng Zhou & Wei Quan & Renyin Cheng, 2023. "Joint Forecasting Model for the Hourly Cooling Load and Fluctuation Range of a Large Public Building Based on GA-SVM and IG-SVM," Sustainability, MDPI, vol. 15(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James Allen & Ari Halberstadt & John Powers & Nael H. El-Farra, 2020. "An Optimization-Based Supervisory Control and Coordination Approach for Solar-Load Balancing in Building Energy Management," Mathematics, MDPI, vol. 8(8), pages 1-28, July.
    2. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    3. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    4. Ali Hamza & Muhammad Uneeb & Iftikhar Ahmad & Komal Saleem & Zunaib Ali, 2023. "Variable Structure-Based Control for Dynamic Temperature Setpoint Regulation in Hospital Extreme Healthcare Zones," Energies, MDPI, vol. 16(10), pages 1-27, May.
    5. Sarwar, Riasat & Cho, Heejin & Cox, Sam J. & Mago, Pedro J. & Luck, Rogelio, 2017. "Field validation study of a time and temperature indexed autoregressive with exogenous (ARX) model for building thermal load prediction," Energy, Elsevier, vol. 119(C), pages 483-496.
    6. Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
    7. Ahmed, Ahmed I. & McLeod, Robert S. & Gustin, Matej, 2021. "Forecasting underheating in dwellings to detect excess winter mortality risks using time series models," Applied Energy, Elsevier, vol. 286(C).
    8. Buonomano, Annamaria & Palombo, Adolfo, 2014. "Building energy performance analysis by an in-house developed dynamic simulation code: An investigation for different case studies," Applied Energy, Elsevier, vol. 113(C), pages 788-807.
    9. Difs, Kristina & Danestig, Maria & Trygg, Louise, 2009. "Increased use of district heating in industrial processes - Impacts on heat load duration," Applied Energy, Elsevier, vol. 86(11), pages 2327-2334, November.
    10. Beccali, M. & Cellura, M. & Lo Brano, V. & Marvuglia, A., 2008. "Short-term prediction of household electricity consumption: Assessing weather sensitivity in a Mediterranean area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(8), pages 2040-2065, October.
    11. Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
    12. Chalal, Moulay Larbi & Benachir, Medjdoub & White, Michael & Shrahily, Raid, 2016. "Energy planning and forecasting approaches for supporting physical improvement strategies in the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 761-776.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:14:y:2019:i:1:p:70-75.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.