Author
Listed:
- Mahmoud Shatat
- Saffa Riffat
- Guohui Gan
Abstract
Important advances have been made in solar water desalination technology but their wide application is restricted by relatively high capital and running costs. Until recently, solar concentrator collectors had usually been employed to distill water in compact desalination systems. Currently, it is possible to replace these collectors by the more efficient evacuated tube collectors, which are now widely available on the market at lower prices. This paper describes the results of experimental and theoretical investigations of the operation of a novel small-scale solar water desalination technology using the psychometric humidification and dehumidification process coupled with a heat pipe evacuated tube solar collector with an aperture area of ∼1.73 m2. Solar radiation during spring in the Middle East was simulated by an array of halogen floodlights. A synthetic brackish water solution was used for the tests and its total dissolved solids (TDSs) and electrical conductivity were measured. A mathematical model was developed to describe the system's operation. A computer program was written to solve the system of governing equations to perform the theoretical calculations of the humidification and dehumidification processes. The experimental and theoretical values for the total daily distillate output were found to be closely correlated. The test results demonstrate that, at temperatures of 55–60°C, the system produces ∼5–6 kg/h of clean water with a high desalination efficiency. Following the experimental calibration of the mathematical model, it was demonstrated that the performance of the system could be improved to produce a considerably higher amount of fresh water.
Suggested Citation
Mahmoud Shatat & Saffa Riffat & Guohui Gan, 2016.
"An innovative psychometric solar-powered water desalination system,"
International Journal of Low-Carbon Technologies, Oxford University Press, vol. 11(2), pages 254-265.
Handle:
RePEc:oup:ijlctc:v:11:y:2016:i:2:p:254-265.
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:11:y:2016:i:2:p:254-265.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.