IDEAS home Printed from https://ideas.repec.org/a/oup/ijlctc/v10y2015i4p365-373..html
   My bibliography  Save this article

Analysis of a SrCl2–NH3 solid sorption refrigeration system

Author

Listed:
  • K. NagaMalleswara Rao
  • M. Ram Gopal
  • Souvik Bhattacharyya

Abstract

The performance of a solid sorption refrigeration system that uses SrCl2 and NH3 as the working pair is analysed based on the heat and mass transfer aspects of the solid sorbent reactors (absorber/generator). The transient, heat and mass transfer model duly considers the effects of reactor wall mass and contact conductance between the reactor wall and the bed. A decent comparison is obtained between the theoretical results and published experimental results on a reactor. The complete system consisting of two absorber/generators, condenser, expansion valve and evaporator is then analysed using the heat and mass transfer model of the reactors. Results are obtained in terms of the coefficient of performance (COP) and specific cooling power (SCP). Results show the possibility of optimizing the bed and operating parameters so as to obtain high COP and/or SCP. The bed thickness, sink temperature and the global reaction advancement are found to affect the performance of the system significantly.

Suggested Citation

  • K. NagaMalleswara Rao & M. Ram Gopal & Souvik Bhattacharyya, 2015. "Analysis of a SrCl2–NH3 solid sorption refrigeration system," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 10(4), pages 365-373.
  • Handle: RePEc:oup:ijlctc:v:10:y:2015:i:4:p:365-373.
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/ijlct/ctt046
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Ting & Xie, Tian & Pan, W.G. & Wang, L.W., 2024. "Experimental study on ammonia-based thermochemical resorption thermal energy storage system," Renewable Energy, Elsevier, vol. 229(C).
    2. Wu, S. & Li, T.X. & Wang, R.Z., 2018. "Experimental identification and thermodynamic analysis of ammonia sorption equilibrium characteristics on halide salts," Energy, Elsevier, vol. 161(C), pages 955-962.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:10:y:2015:i:4:p:365-373.. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.