Author
Listed:
- Daniel E. Comarazamy
- Jorge E. González
- Jeffrey C. Luvall
Abstract
Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming (GW). The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by the use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico, as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with climate scenarios combining urban development and sprawl with regional climate change over the past 50 years and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the lowland coastal plain vegetation with man-made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The GW signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences owing to GW are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:ijlctc:v:10:y:2015:i:1:p:87-97.. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/ijlct .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.