IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i4p799-811.html
   My bibliography  Save this article

Choosing trajectory and data type when classifying functional data

Author

Listed:
  • Peter Hall
  • Tapabrata Maiti

Abstract

In some problems involving functional data, it is desired to undertake prediction or classification before the full trajectory of a function is observed. In such cases, it is often preferable to suffer somewhat greater error in return for making a decision relatively early. The prediction and classification problems can be treated similarly, using mean squared prediction error, or classification error, respectively, as the means for quantifying performance, so in this paper we focus principally on classification. We introduce a method for determining when an early decision can reasonably be made, using only part of the trajectory, and we show how to use the method to choose among data types. Our approach is fully nonparametric, and no specific model is required. Properties of error-rate are studied as functions of time and data type. The effectiveness of the proposed method is illustrated in both theoretical and numerical terms. The classification referred to in this paper would be termed supervised classification in machine learning, to distinguish it from unsupervised classification, or clustering. Copyright 2012, Oxford University Press.

Suggested Citation

  • Peter Hall & Tapabrata Maiti, 2012. "Choosing trajectory and data type when classifying functional data," Biometrika, Biometrika Trust, vol. 99(4), pages 799-811.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:4:p:799-811
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass011
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:4:p:799-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.