IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i4p775-786.html
   My bibliography  Save this article

Classification based on a permanental process with cyclic approximation

Author

Listed:
  • J. Yang
  • K. Miescke
  • P. McCullagh

Abstract

We introduce a doubly stochastic marked point process model for supervised classification problems. Regardless of the number of classes or the dimension of the feature space, the model requires only 2--3 parameters for the covariance function. The classification criterion involves a permanental ratio for which an approximation using a polynomial-time cyclic expansion is proposed. The approximation is effective even if the feature region occupied by one class is a patchwork interlaced with regions occupied by other classes. An application to DNA microarray analysis indicates that the cyclic approximation is effective even for high-dimensional data. It can employ feature variables in an efficient way to reduce the prediction error significantly. This is critical when the true classification relies on nonreducible high-dimensional features. Copyright 2012, Oxford University Press.

Suggested Citation

  • J. Yang & K. Miescke & P. McCullagh, 2012. "Classification based on a permanental process with cyclic approximation," Biometrika, Biometrika Trust, vol. 99(4), pages 775-786.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:4:p:775-786
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass047
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawud Thongtha & Nathakhun Wiroonsri, 2023. "Normal Approximation for Fire Incident Simulation Using Permanental Cox Processes," Methodology and Computing in Applied Probability, Springer, vol. 25(1), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:4:p:775-786. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.