IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i3p569-583.html
   My bibliography  Save this article

On multilinear principal component analysis of order-two tensors

Author

Listed:
  • Hung Hung
  • Peishien Wu
  • Iping Tu
  • Suyun Huang

Abstract

Principal component analysis is commonly used for dimension reduction in analysing high-dimensional data. Multilinear principal component analysis aims to serve a similar function for analysing tensor structure data, and has empirically been shown effective in reducing dimensionality. In this paper, we investigate its statistical properties and demonstrate its advantages. Conventional principal component analysis, which vectorizes the tensor data, may lead to inefficient and unstable prediction due to the often extremely large dimensionality involved. Multilinear principal component analysis, in trying to preserve the data structure, searches for low-dimensional projections and, thereby, decreases dimensionality more efficiently. The asymptotic theory of order-two multilinear principal component analysis, including asymptotic efficiency and distributions of principal components, associated projections, and the explained variance, is developed. A test of dimensionality is also proposed. Finally, multilinear principal component analysis is shown to improve conventional principal component analysis in analysing the Olivetti faces dataset, which is achieved by extracting a more modularly oriented basis set in reconstructing the test faces. Copyright 2012, Oxford University Press.

Suggested Citation

  • Hung Hung & Peishien Wu & Iping Tu & Suyun Huang, 2012. "On multilinear principal component analysis of order-two tensors," Biometrika, Biometrika Trust, vol. 99(3), pages 569-583.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:569-583
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/ass019
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Shih-Hao & Huang, Su-Yun, 2021. "On the asymptotic normality and efficiency of Kronecker envelope principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 184(C).
    2. Ding, Shanshan & Cook, R. Dennis, 2015. "Tensor sliced inverse regression," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 216-231.
    3. Tu, I-Ping & Huang, Su-Yun & Hsieh, Dai-Ni, 2019. "The generalized degrees of freedom of multilinear principal component analysis," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 26-37.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:3:p:569-583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.