IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i2p379-392.html
   My bibliography  Save this article

Efficient estimation for the Cox model with varying coefficients

Author

Listed:
  • Kani Chen
  • Huazhen Lin
  • Yong Zhou

Abstract

A proportional hazards model with varying coefficients allows one to examine the extent to which covariates interact nonlinearly with an exposure variable. A global partial likelihood method, in contrast with the local partial likelihood method of Fan et al. (2006), is proposed for estimation of varying coefficient functions. The proposed estimators are proved to be consistent and asymptotically normal. Semiparametric efficiency of the estimators is demonstrated in terms of their linear functionals. Evidence in support of the superiority of the method is presented in numerical studies and real examples. Copyright 2012, Oxford University Press.

Suggested Citation

  • Kani Chen & Huazhen Lin & Yong Zhou, 2012. "Efficient estimation for the Cox model with varying coefficients," Biometrika, Biometrika Trust, vol. 99(2), pages 379-392.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:379-392
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr081
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huazhen Lin & Zhe Fei & Yi Li, 2016. "A Semiparametrically Efficient Estimator of the Time-Varying Effects for Survival Data with Time-Dependent Treatment," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(3), pages 649-663, September.
    2. Huazhen Lin & Hyokyoung G. Hong & Baoying Yang & Wei Liu & Yong Zhang & Gang-Zhi Fan & Yi Li, 2019. "Nonparametric Time-Varying Coefficient Models for Panel Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 548-566, December.
    3. X. Joan Hu & Rhonda J. Rosychuk, 2016. "Marginal regression analysis of recurrent events with coarsened censoring times," Biometrics, The International Biometric Society, vol. 72(4), pages 1113-1122, December.
    4. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:379-392. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.