IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v99y2012i2p315-325.html
   My bibliography  Save this article

Global optimality of nonconvex penalized estimators

Author

Listed:
  • Yongdai Kim
  • Sunghoon Kwon

Abstract

Nonconvex penalties such as the smoothly clipped absolute deviation or minimax concave penalties have desirable properties such as the oracle property, even when the dimension of the predictive variables is large. However, checking whether a given local minimizer has such properties is not easy since there can be many local minimizers. In this paper, we give sufficient conditions under which a local minimizer is unique, and show that the oracle estimator becomes the unique local minimizer with probability tending to one. Copyright 2012, Oxford University Press.

Suggested Citation

  • Yongdai Kim & Sunghoon Kwon, 2012. "Global optimality of nonconvex penalized estimators," Biometrika, Biometrika Trust, vol. 99(2), pages 315-325.
  • Handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:315-325
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr084
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Sangin & Kim, Yongdai & Kwon, Sunghoon, 2012. "Quadratic approximation for nonconvex penalized estimations with a diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 82(9), pages 1710-1717.
    2. Lian, Heng & Kim, Yongdai, 2016. "Nonconvex penalized reduced rank regression and its oracle properties in high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 383-393.
    3. Xiang Zhang & Yichao Wu & Lan Wang & Runze Li, 2016. "Variable selection for support vector machines in moderately high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(1), pages 53-76, January.
    4. Kwon, Sunghoon & Lee, Sangin & Kim, Yongdai, 2015. "Moderately clipped LASSO," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 53-67.
    5. Jeon, Jong-June & Kwon, Sunghoon & Choi, Hosik, 2017. "Homogeneity detection for the high-dimensional generalized linear model," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 61-74.
    6. Yongdai Kim & Jong-June Jeon & Sangmi Han, 2016. "A Necessary Condition for the Strong Oracle Property," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 610-624, June.
    7. Sunghoon Kwon & Jeongyoun Ahn & Woncheol Jang & Sangin Lee & Yongdai Kim, 2017. "A doubly sparse approach for group variable selection," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 997-1025, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:99:y:2012:i:2:p:315-325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.