IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i4p987-994.html
   My bibliography  Save this article

Likelihood analysis of the binary instrumental variable model

Author

Listed:
  • R. R. Ramsahai
  • S. L. Lauritzen

Abstract

Instrumental variables are widely used for the identification of the causal effect of one random variable on another under unobserved confounding. The distribution of the observable variables for a discrete instrumental variable model satisfies certain inequalities but no conditional independence relations. Such models are usually tested by checking whether the relative frequency estimators of the parameters satisfy the constraints. This ignores sampling uncertainty in the data. Using the observable constraints for the instrumental variable model, a likelihood analysis is conducted. A significance test for its validity is developed, and a bootstrap algorithm for computing confidence intervals for the causal effect is proposed. Applications are given to illustrate the advantage of the suggested approach. Copyright 2011, Oxford University Press.

Suggested Citation

  • R. R. Ramsahai & S. L. Lauritzen, 2011. "Likelihood analysis of the binary instrumental variable model," Biometrika, Biometrika Trust, vol. 98(4), pages 987-994.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:987-994
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr040
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ryo Kato & Takahiro Hoshino, 2018. "Semiparametric Bayes Instrumental Variable Estimation with Many Weak Instruments," Discussion Paper Series DP2018-14, Research Institute for Economics & Business Administration, Kobe University.
    2. Roland R. Ramsahai, 2013. "Probabilistic causality and detecting collections of interdependence patterns," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 705-723, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:987-994. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.