IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v98y2011i4p935-951.html
   My bibliography  Save this article

Elliptical graphical modelling

Author

Listed:
  • D. Vogel
  • R. Fried

Abstract

We propose elliptical graphical models based on conditional uncorrelatedness as a robust generalization of Gaussian graphical models. Letting the population distribution be elliptical instead of normal allows the fitting of data with arbitrarily heavy tails. We study the class of proportionally affine equivariant scatter estimators and show how they can be used to perform elliptical graphical modelling. This leads to a new class of partial correlation estimators and analogues of the classical deviance test. General expressions for the asymptotic variance of partial correlation estimators, unconstrained and under decomposable models, are given, and the asymptotic chi square approximation for the pseudo-deviance test statistic is proved. The feasibility of our approach is demonstrated by a simulation study, using, among others, Tyler's scatter estimator, which is distribution-free within the elliptical model. Copyright 2011, Oxford University Press.

Suggested Citation

  • D. Vogel & R. Fried, 2011. "Elliptical graphical modelling," Biometrika, Biometrika Trust, vol. 98(4), pages 935-951.
  • Handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:935-951
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asr037
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vinciotti, Veronica & Hashem, Hussein, 2013. "Robust methods for inferring sparse network structures," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 84-94.
    2. Sladana Babic & Laetitia Gelbgras & Marc Hallin & Christophe Ley, 2019. "Optimal tests for elliptical symmetry: specified and unspecified location," Working Papers ECARES 2019-26, ULB -- Universite Libre de Bruxelles.
    3. Dürre, Alexander & Vogel, Daniel, 2016. "Asymptotics of the two-stage spatial sign correlation," Journal of Multivariate Analysis, Elsevier, vol. 144(C), pages 54-67.
    4. Davy Paindaveine & Thomas Verdebout, 2011. "Rank Tests for Elliptical Graphical Modeling," Working Papers ECARES ECARES 2011-039, ULB -- Universite Libre de Bruxelles.
    5. Daniel Felix Ahelegbey, 2015. "The Econometrics of Networks: A Review," Working Papers 2015:13, Department of Economics, University of Venice "Ca' Foscari".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:98:y:2011:i:4:p:935-951. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.