IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i4p839-850.html
   My bibliography  Save this article

Censored quantile regression with partially functional effects

Author

Listed:
  • Jing Qian
  • Limin Peng

Abstract

Quantile regression offers a flexible approach to analyzing survival data, allowing each covariate effect to vary with quantiles. In practice, constancy is often found to be adequate for some covariates. In this paper, we study censored quantile regression tailored to the partially functional effect setting with a mixture of varying and constant effects. Such a model can offer a simpler view regarding covariate-survival association and, moreover, can enable improvement in estimation efficiency. We propose profile estimating equations and present an iterative algorithm that can be readily and stably implemented. Asymptotic properties of the resultant estimators are established. A simple resampling-based inference procedure is developed and justified. Extensive simulation studies demonstrate efficiency gains of the proposed method over a naive two-stage procedure. The proposed method is illustrated via an application to a recent renal dialysis study. Copyright 2010, Oxford University Press.

Suggested Citation

  • Jing Qian & Limin Peng, 2010. "Censored quantile regression with partially functional effects," Biometrika, Biometrika Trust, vol. 97(4), pages 839-850.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:839-850
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq050
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xie, Shangyu & Wan, Alan T.K. & Zhou, Yong, 2015. "Quantile regression methods with varying-coefficient models for censored data," Computational Statistics & Data Analysis, Elsevier, vol. 88(C), pages 154-172.
    2. Jiang Du & Zhongzhan Zhang & Tianfa Xie, 2017. "Focused information criterion and model averaging in censored quantile regression," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 80(5), pages 547-570, July.
    3. J. E. Soh & Yijian Huang, 2021. "A varying-coefficient model for gap times between recurrent events," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(3), pages 437-459, July.
    4. Yijian Huang, 2017. "Restoration of Monotonicity Respecting in Dynamic Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 613-622, April.
    5. Tang, Yanlin & Wang, Huixia Judy, 2015. "Penalized regression across multiple quantiles under random censoring," Journal of Multivariate Analysis, Elsevier, vol. 141(C), pages 132-146.
    6. Li, Ruosha & Peng, Limin, 2014. "Varying coefficient subdistribution regression for left-truncated semi-competing risks data," Journal of Multivariate Analysis, Elsevier, vol. 131(C), pages 65-78.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:4:p:839-850. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.