IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v97y2010i3p551-566.html
   My bibliography  Save this article

Penalized Bregman divergence for large-dimensional regression and classification

Author

Listed:
  • Chunming Zhang
  • Yuan Jiang
  • Yi Chai

Abstract

Regularization methods are characterized by loss functions measuring data fits and penalty terms constraining model parameters. The commonly used quadratic loss is not suitable for classification with binary responses, whereas the loglikelihood function is not readily applicable to models where the exact distribution of observations is unknown or not fully specified. We introduce the penalized Bregman divergence by replacing the negative loglikelihood in the conventional penalized likelihood with Bregman divergence, which encompasses many commonly used loss functions in the regression analysis, classification procedures and machine learning literature. We investigate new statistical properties of the resulting class of estimators with the number p n of parameters either diverging with the sample size n or even nearly comparable with n, and develop statistical inference tools. It is shown that the resulting penalized estimator, combined with appropriate penalties, achieves the same oracle property as the penalized likelihood estimator, but asymptotically does not rely on the complete specification of the underlying distribution. Furthermore, the choice of loss function in the penalized classifiers has an asymptotically relatively negligible impact on classification performance. We illustrate the proposed method for quasilikelihood regression and binary classification with simulation evaluation and real-data application. Copyright 2010, Oxford University Press.

Suggested Citation

  • Chunming Zhang & Yuan Jiang & Yi Chai, 2010. "Penalized Bregman divergence for large-dimensional regression and classification," Biometrika, Biometrika Trust, vol. 97(3), pages 551-566.
  • Handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:551-566
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asq033
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yoshida, Takuma & Naito, Kanta, 2019. "Regression with stagewise minimization on risk function," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 123-143.
    2. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:97:y:2010:i:3:p:551-566. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.