IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i2p357-370.html
   My bibliography  Save this article

Covariate-adjusted generalized linear models

Author

Listed:
  • Damla Şentürk
  • Hans-Georg Müller

Abstract

We propose covariate adjustment methodology for a situation where one wishes to study the dependence of a generalized response on predictors while both predictors and response are distorted by an observable covariate. The distorting covariate is thought of as a size measurement that affects predictors in a multiplicative fashion. The generalized response is modelled by means of a random threshold, where the subject-specific thresholds are affected by a multiplicative factor that is a function of the distorting covariate. While the various factors are modelled as smooth unknown functions of the distorting covariate, the underlying relationship between response and covariates is assumed to be governed by a generalized linear model with a known link function. This model provides an extension of a covariate-adjusted regression approach to the case of a generalized linear model. We demonstrate that this contamination model leads to a semiparametric varying-coefficient model. Numerical implementation is straightforward by combining binning, quasilikelihood, and smoothing steps. The asymptotic distribution of the proposed estimators for the regression coefficients of the latent generalized linear model is derived by means of a martingale central limit theorem. Combining this result with consistent estimators for the asymptotic variance makes it then possible to obtain asymptotic inference for the targeted parameters. Both real and simulated data are used in illustrating the proposed methodology. Copyright 2009, Oxford University Press.

Suggested Citation

  • Damla Şentürk & Hans-Georg Müller, 2009. "Covariate-adjusted generalized linear models," Biometrika, Biometrika Trust, vol. 96(2), pages 357-370.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:2:p:357-370
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asp012
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jun & Zhu, Li-Ping & Zhu, Li-Xing, 2012. "On a dimension reduction regression with covariate adjustment," Journal of Multivariate Analysis, Elsevier, vol. 104(1), pages 39-55, February.
    2. Zhang, Jun & Feng, Zhenghui & Zhou, Bu, 2014. "A revisit to correlation analysis for distortion measurement error data," Journal of Multivariate Analysis, Elsevier, vol. 124(C), pages 116-129.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:2:p:357-370. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.