IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v96y2009i1p229-236.html
   My bibliography  Save this article

A note on profile likelihood for exponential tilt mixture models

Author

Listed:
  • Z. Tan

Abstract

Suppose that independent observations are drawn from multiple distributions, each of which is a mixture of two component distributions such that their log density ratio satisfies a linear model with a slope parameter and an intercept parameter. Inference for such models has been studied using empirical likelihood, and mixed results have been obtained. The profile empirical likelihood of the slope and intercept has an irregularity at the null hypothesis so that the two component distributions are equal. We derive a profile empirical likelihood and maximum likelihood estimator of the slope alone, and obtain the usual asymptotic properties for the estimator and the likelihood ratio statistic regardless of the null. Furthermore, we show the maximum likelihood estimator of the slope and intercept jointly is consistent and asymptotically normal regardless of the null. At the null, the joint maximum likelihood estimator falls along a straight line through the origin with perfect correlation asymptotically to the first order. Copyright 2009, Oxford University Press.

Suggested Citation

  • Z. Tan, 2009. "A note on profile likelihood for exponential tilt mixture models," Biometrika, Biometrika Trust, vol. 96(1), pages 229-236.
  • Handle: RePEc:oup:biomet:v:96:y:2009:i:1:p:229-236
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn059
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Ning & Yong Chen, 2015. "A Class of Pseudolikelihood Ratio Tests for Homogeneity in Exponential Tilt Mixture Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 504-517, June.
    2. Guanghua Han & Ming Dong, 2017. "Sustainable Regulation of Information Sharing with Electronic Data Interchange by a Trust-Embedded Contract," Sustainability, MDPI, vol. 9(6), pages 1-22, June.
    3. Jing Cheng & Jing Qin & Biao Zhang, 2009. "Semiparametric estimation and inference for distributional and general treatment effects," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 881-904, September.
    4. Yufan Wang & Xingzhong Xu, 2023. "A Posterior p -Value for Homogeneity Testing of the Three-Sample Problem," Mathematics, MDPI, vol. 11(18), pages 1-25, September.
    5. Chuan Hong & Yang Ning & Shuang Wang & Hao Wu & Raymond J. Carroll & Yong Chen, 2017. "PLEMT: A Novel Pseudolikelihood-Based EM Test for Homogeneity in Generalized Exponential Tilt Mixture Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1393-1404, October.
    6. Pengfei Li & Yukun Liu & Jing Qin, 2017. "Semiparametric Inference in a Genetic Mixture Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1250-1260, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:96:y:2009:i:1:p:229-236. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.