IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i4p947-960.html
   My bibliography  Save this article

Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data

Author

Listed:
  • Yi Li
  • Ross L. Prentice
  • Xihong Lin

Abstract

We consider a class of semiparametric normal transformation models for right-censored bivariate failure times. Nonparametric hazard rate models are transformed to a standard normal model and a joint normal distribution is assumed for the bivariate vector of transformed variates. A semiparametric maximum likelihood estimation procedure is developed for estimating the marginal survival distribution and the pairwise correlation parameters. This produces an efficient estimator of the correlation parameter of the semiparametric normal transformation model, which characterizes the dependence of bivariate survival outcomes. In addition, a simple positive-mass-redistribution algorithm can be used to implement the estimation procedures. Since the likelihood function involves infinite-dimensional parameters, empirical process theory is utilized to study the asymptotic properties of the proposed estimators, which are shown to be consistent, asymptotically normal and semiparametric efficient. A simple estimator for the variance of the estimates is derived. Finite sample performance is evaluated via extensive simulations. Copyright 2008, Oxford University Press.

Suggested Citation

  • Yi Li & Ross L. Prentice & Xihong Lin, 2008. "Semiparametric maximum likelihood estimation in normal transformation models for bivariate survival data," Biometrika, Biometrika Trust, vol. 95(4), pages 947-960.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:947-960
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn049
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ross L. Prentice & Shanshan Zhao, 2018. "Nonparametric estimation of the multivariate survivor function: the multivariate Kaplan–Meier estimator," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 24(1), pages 3-27, January.
    2. Steven Abrams & Paul Janssen & Jan Swanepoel & Noël Veraverbeke, 2020. "Nonparametric estimation of the cross ratio function," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(3), pages 771-801, June.
    3. Qian M. Zhou, 2024. "Information matrix equivalence in the presence of censoring: a goodness-of-fit test for semiparametric copula models with multivariate survival data," Statistical Papers, Springer, vol. 65(7), pages 4677-4713, September.
    4. Cheng, Guang & Zhou, Lan & Chen, Xiaohong & Huang, Jianhua Z., 2014. "Efficient estimation of semiparametric copula models for bivariate survival data," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 330-344.
    5. José Romeo & Nelson Tanaka & Antonio Pedroso-de-Lima & Victor Salinas-Torres, 2013. "Large sample properties for a class of copulas in bivariate survival analysis," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 76(8), pages 997-1015, November.
    6. Chiou, Sy Han & Qian, Jing & Mormino, Elizabeth & Betensky, Rebecca A., 2018. "Permutation tests for general dependent truncation," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 308-324.
    7. Mirza Nazmul Hasan & Roel Braekers, 2021. "Estimation of the association parameters in hierarchically clustered survival data by nested Archimedean copula functions," Computational Statistics, Springer, vol. 36(4), pages 2755-2787, December.
    8. Lawless, Jerald F. & Yilmaz, Yildiz E., 2011. "Comparison of semiparametric maximum likelihood estimation and two-stage semiparametric estimation in copula models," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2446-2455, July.
    9. Mirza Nazmul Hasan & Roel Braekers, 2022. "Modelling the association in bivariate survival data by using a Bernstein copula," Computational Statistics, Springer, vol. 37(2), pages 781-815, April.
    10. Lajmi Lakhal-Chaieb & Thierry Duchesne, 2017. "Association measures for bivariate failure times in the presence of a cure fraction," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(4), pages 517-532, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:947-960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.