IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i4p891-905.html
   My bibliography  Save this article

Model diagnostic tests for selecting informative correlation structure in correlated data

Author

Listed:
  • Annie Qu
  • J. Jack Lee
  • Bruce G. Lindsay

Abstract

In the generalized method of moments approach to longitudinal data analysis, unbiased estimating functions can be constructed to incorporate both the marginal mean and the correlation structure of the data. Increasing the number of parameters in the correlation structure corresponds to increasing the number of estimating functions. Thus, building a correlation model is equivalent to selecting estimating functions. This paper proposes a chi-squared test to choose informative unbiased estimating functions. We show that this methodology is useful for identifying which source of correlation it is important to incorporate when there are multiple possible sources of correlation. This method can also be applied to determine the optimal working correlation for the generalized estimating equation approach. Copyright 2008, Oxford University Press.

Suggested Citation

  • Annie Qu & J. Jack Lee & Bruce G. Lindsay, 2008. "Model diagnostic tests for selecting informative correlation structure in correlated data," Biometrika, Biometrika Trust, vol. 95(4), pages 891-905.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:891-905
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn051
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kwon, Yongchan & Choi, Young-Geun & Park, Taesung & Ziegler, Andreas & Paik, Myunghee Cho, 2017. "Generalized estimating equations with stabilized working correlation structure," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 1-11.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:891-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.