IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i4p831-845.html
   My bibliography  Save this article

A goodness-of-fit test for inhomogeneous spatial Poisson processes

Author

Listed:
  • Yongtao Guan

Abstract

We introduce a formal testing procedure to assess the fit of an inhomogeneous spatial Poisson process model, based on a discrepancy measure function that is constructed from residuals obtained from the fitted model. We derive the asymptotic distributional properties of and develop a test statistic based on them. Our test statistic has a limiting standard normal distribution, so that the test can be performed by simply comparing the test statistic with readily available critical values. We perform a simulation study to assess the performance of the proposed method and apply it to a real data example. Copyright 2008, Oxford University Press.

Suggested Citation

  • Yongtao Guan, 2008. "A goodness-of-fit test for inhomogeneous spatial Poisson processes," Biometrika, Biometrika Trust, vol. 95(4), pages 831-845.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:831-845
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn045
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    2. Baddeley, Adrian & Hardegen, Andrew & Lawrence, Thomas & Milne, Robin K. & Nair, Gopalan & Rakshit, Suman, 2017. "On two-stage Monte Carlo tests of composite hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 75-87.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:4:p:831-845. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.