IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i2p335-349.html
   My bibliography  Save this article

Multi-parameter automodels and their applications

Author

Listed:
  • Cécile Hardouin
  • Jian-Feng Yao

Abstract

Motivated by the modelling of non-Gaussian data or positively correlated data on a lattice, extensions of Besag's automodels to exponential families with multi-dimensional parameters have been proposed recently. We provide a multiple-parameter analogue of Besag's one-dimensional result that gives the necessary form of the exponential families for the Markov random field's conditional distributions. We propose estimation of parameters by maximum pseudolikelihood and give a proof of the consistency of the estimators for the multi-parameter automodel. The methodology is illustrated with examples, in particular the building of a cooperative system with beta conditional distributions. We also indicate future applications of these models to the analysis of mixed-state spatial data. Copyright 2008, Oxford University Press.

Suggested Citation

  • Cécile Hardouin & Jian-Feng Yao, 2008. "Multi-parameter automodels and their applications," Biometrika, Biometrika Trust, vol. 95(2), pages 335-349.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:2:p:335-349
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asn016
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:2:p:335-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.