IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i1p233-240.html
   My bibliography  Save this article

Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data

Author

Listed:
  • Yu Cheng
  • Jason P. Fine

Abstract

We propose an alternative representation of the cause-specific cross hazard ratio for bivariate competing risks data. The representation leads to a simple plug-in estimator, unlike an existing ad hoc procedure. The large sample properties of the resulting inferences are established. Simulations and a real data example demonstrate that the proposed methodology may substantially reduce the computational burden of the existing procedure, while maintaining similar efficiency properties. Copyright 2008, Oxford University Press.

Suggested Citation

  • Yu Cheng & Jason P. Fine, 2008. "Nonparametric estimation of cause-specific cross hazard ratio with bivariate competing risks data," Biometrika, Biometrika Trust, vol. 95(1), pages 233-240.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:233-240
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm089
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang Hao & Cheng Yu, 2014. "Piecewise Cause-Specific Association Analyses of Multivariate Untied or Tied Competing Risks Data," The International Journal of Biostatistics, De Gruyter, vol. 10(2), pages 197-220, November.
    2. Prakash Chandra & Yogesh Mani Tripathi & Liang Wang & Chandrakant Lodhi, 2023. "Estimation for Kies distribution with generalized progressive hybrid censoring under partially observed competing risks model," Journal of Risk and Reliability, , vol. 237(6), pages 1048-1072, December.
    3. Cheng Yu, 2009. "Modeling Cumulative Incidences of Dementia and Dementia-Free Death Using a Novel Three-Parameter Logistic Function," The International Journal of Biostatistics, De Gruyter, vol. 5(1), pages 1-19, November.
    4. Jeongyong Kim & Karen Bandeen-Roche, 2019. "Parametric estimation of association in bivariate failure-time data subject to competing risks: sensitivity to underlying assumptions," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(2), pages 259-279, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:233-240. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.