IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v95y2008i1p149-167.html
   My bibliography  Save this article

Probability estimation for large-margin classifiers

Author

Listed:
  • Junhui Wang
  • Xiaotong Shen
  • Yufeng Liu

Abstract

Large margin classifiers have proven to be effective in delivering high predictive accuracy, particularly those focusing on the decision boundaries and bypassing the requirement of estimating the class probability given input for discrimination. As a result, these classifiers may not directly yield an estimated class probability, which is of interest itself. To overcome this difficulty, this article proposes a novel method for estimating the class probability through sequential classifications, by using features of interval estimation of large-margin classifiers. The method uses sequential classifications to bracket the class probability to yield an estimate up to the desired level of accuracy. The method is implemented for support vector machines and ψ-learning, in addition to an estimated Kullback--Leibler loss for tuning. A solution path of the method is derived for support vector machines to reduce further its computational cost. Theoretical and numerical analyses indicate that the method is highly competitive against alternatives, especially when the dimension of the input greatly exceeds the sample size. Finally, an application to leukaemia data is described. Copyright 2008, Oxford University Press.

Suggested Citation

  • Junhui Wang & Xiaotong Shen & Yufeng Liu, 2008. "Probability estimation for large-margin classifiers," Biometrika, Biometrika Trust, vol. 95(1), pages 149-167.
  • Handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:149-167
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm077
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    2. Yichao Wu, 2011. "An ordinary differential equation-based solution path algorithm," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 23(1), pages 185-199.
    3. Yuta Tanoue & Satoshi Yamashita & Hideaki Nagahata, 2020. "Comparison study of two-step LGD estimation model with probability machines," Risk Management, Palgrave Macmillan, vol. 22(3), pages 155-177, September.
    4. Fang Yao & Yichao Wu & Jialin Zou, 2016. "Probability-enhanced effective dimension reduction for classifying sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-22, March.
    5. Wang, Junhui & Fang, Yixin, 2013. "Analysis of presence-only data via semi-supervised learning approaches," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 134-143.
    6. John D. Rice & Jeremy M. G. Taylor, 2016. "Locally Weighted Score Estimation for Quantile Classification in Binary Regression Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 333-350, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:95:y:2008:i:1:p:149-167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.