IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i2p415-426.html
   My bibliography  Save this article

Aster models for life history analysis

Author

Listed:
  • Charles J. Geyer
  • Stuart Wagenius
  • Ruth G. Shaw

Abstract

We present a new class of statistical models, designed for life history analysis of plants and animals, that allow joint analysis of data on survival and reproduction over multiple years, allow for variables having different probability distributions, and correctly account for the dependence of variables on earlier variables. We illustrate their utility with an analysis of data taken from an experimental study of Echinacea angustifolia sampled from remnant prairie populations in western Minnesota. These models generalize both generalized linear models and survival analysis. The joint distribution is factorized as a product of conditional distributions, each an exponential family with the conditioning variable being the sample size of the conditional distribution. The model may be heterogeneous, each conditional distribution being from a different exponential family. We show that the joint distribution is from a flat exponential family and derive its canonical parameters, Fisher information and other properties. These models are implemented in an R package 'aster' available from the Comprehensive R Archive Network, CRAN. Copyright 2007, Oxford University Press.

Suggested Citation

  • Charles J. Geyer & Stuart Wagenius & Ruth G. Shaw, 2007. "Aster models for life history analysis," Biometrika, Biometrika Trust, vol. 94(2), pages 415-426.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:415-426
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm030
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minji Lee & Zhihua Su, 2020. "A Review of Envelope Models," International Statistical Review, International Statistical Institute, vol. 88(3), pages 658-676, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:415-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.