IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i4p809-825.html
   My bibliography  Save this article

Bayesian model selection for partially observed diffusion models

Author

Listed:
  • Petros Dellaportas
  • Nial Friel
  • Gareth O. Roberts

Abstract

We present an approach to Bayesian model selection for finitely observed diffusion processes. We use data augmentation by treating the paths between observed points as missing data. For a fixed model formulation, the strong dependence between the missing paths and the volatility of the diffusion can be broken down by adopting the method of Roberts & Stramer (2001). We describe how this method may be extended to the case of model selection via reversible jump Markov chain Monte Carlo. In addition we extend the formulation of a diffusion model to capture a potential non-Markov state dependence in the drift. Issues of appropriate choices of priors and efficient transdimensional proposal distributions for the reversible jump algorithm are also addressed. The approach is illustrated using simulated data and an example from finance. Copyright 2006, Oxford University Press.

Suggested Citation

  • Petros Dellaportas & Nial Friel & Gareth O. Roberts, 2006. "Bayesian model selection for partially observed diffusion models," Biometrika, Biometrika Trust, vol. 93(4), pages 809-825, December.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:809-825
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.4.809
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Haslett & Andrew Parnell, 2008. "A simple monotone process with application to radiocarbon‐dated depth chronologies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 57(4), pages 399-418, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:809-825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.