IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i4p1003-1010.html
   My bibliography  Save this article

A diagnostic test for the mixing distribution in a generalised linear mixed model

Author

Listed:
  • Eric J. Tchetgen
  • Brent A. Coull

Abstract

We introduce a diagnostic test for the mixing distribution in a generalised linear mixed model. The test is based on the difference between the marginal maximum likelihood and conditional maximum likelihood estimators of a subset of the fixed effects in the model. We derive the asymptotic variance of this difference, and propose a test statistic that has a limiting chi-squared distribution under the null hypothesis that the mixing distribution is correctly specified. This strategy uses an idea presented by Hausman (1978), who considered analogous tests for the linear mixed model. An important advantage of the methods outlined here is that the resulting diagnostic test is easily implemented in commercial software. We illustrate the method by applying it to data from a clinical trial investigating the effect of hormonal contraceptives in women. Copyright 2006, Oxford University Press.

Suggested Citation

  • Eric J. Tchetgen & Brent A. Coull, 2006. "A diagnostic test for the mixing distribution in a generalised linear mixed model," Biometrika, Biometrika Trust, vol. 93(4), pages 1003-1010, December.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:1003-1010
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.4.1003
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco, Bartolucci & Silvia, Bacci & Claudia, Pigini, 2015. "A misspecification test for finite-mixture logistic models for clustered binary and ordered responses," MPRA Paper 64220, University Library of Munich, Germany.
    2. Lin, Kuo-Chin & Chen, Yi-Ju, 2015. "Detecting misspecification in the random-effects structure of cumulative logit models," Computational Statistics & Data Analysis, Elsevier, vol. 92(C), pages 126-133.
    3. Carolina Perez-Heydrich & Michael G. Hudgens & M. Elizabeth Halloran & John D. Clemens & Mohammad Ali & Michael E. Emch, 2014. "Assessing effects of cholera vaccination in the presence of interference," Biometrics, The International Biometric Society, vol. 70(3), pages 731-741, September.
    4. Bartolucci, Francesco & Bacci, Silvia & Pigini, Claudia, 2017. "Misspecification test for random effects in generalized linear finite-mixture models for clustered binary and ordered data," Econometrics and Statistics, Elsevier, vol. 3(C), pages 112-131.
    5. Reza Drikvandi & Geert Verbeke & Geert Molenberghs, 2017. "Diagnosing misspecification of the random-effects distribution in mixed models," Biometrics, The International Biometric Society, vol. 73(1), pages 63-71, March.
    6. Shun Yu & Xianzheng Huang, 2017. "Random-intercept misspecification in generalized linear mixed models for binary responses," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 26(3), pages 333-359, August.
    7. Joseph Puleo & Ashley Buchanan & Natallia Katenka & M. Elizabeth Halloran & Samuel R. Friedman & Georgios Nikolopoulos, 2024. "Assessing Spillover Effects of Medications for Opioid Use Disorder on HIV Risk Behaviors among a Network of People Who Inject Drugs," Stats, MDPI, vol. 7(2), pages 1-27, June.
    8. Shun Yu & Xianzheng Huang, 2019. "Link misspecification in generalized linear mixed models with a random intercept for binary responses," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(3), pages 827-843, September.
    9. Pinho, Luis Gustavo B. & Nobre, Juvêncio S. & Singer, Julio M., 2015. "Cook’s distance for generalized linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 126-136.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:4:p:1003-1010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.