IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v93y2006i2p459-464.html
   My bibliography  Save this article

Rank-based regression for analysis of repeated measures

Author

Listed:
  • You-Gan Wang
  • Min Zhu

Abstract

We consider rank-based regression models for repeated measures. To account for possible withinsubject correlations, we decompose the total ranks into between- and within-subject ranks and obtain two different estimators based on between- and within-subject ranks. A simple perturbation method is then introduced to generate bootstrap replicates of the estimating functions and the parameter estimates. This provides a convenient way for combining the corresponding two types of estimating function for more efficient estimation. Copyright 2006, Oxford University Press.

Suggested Citation

  • You-Gan Wang & Min Zhu, 2006. "Rank-based regression for analysis of repeated measures," Biometrika, Biometrika Trust, vol. 93(2), pages 459-464, June.
  • Handle: RePEc:oup:biomet:v:93:y:2006:i:2:p:459-464
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/93.2.459
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liya Fu & You-Gan Wang, 2012. "Efficient Estimation for Rank-Based Regression with Clustered Data," Biometrics, The International Biometric Society, vol. 68(4), pages 1074-1082, December.
    2. Tianqing Liu & Xiaohui Yuan, 2020. "Empirical likelihood-based weighted rank regression with missing covariates," Statistical Papers, Springer, vol. 61(2), pages 697-725, April.
    3. Fu, Liya & Wang, You-Gan & Bai, Zhidong, 2010. "Rank regression for analysis of clustered data: A natural induced smoothing approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1036-1050, April.
    4. You-Gan Wang & Yudong Zhao, 2008. "Weighted Rank Regression for Clustered Data Analysis," Biometrics, The International Biometric Society, vol. 64(1), pages 39-45, March.
    5. Wang, You-Gan & Fu, Liya, 2011. "Rank regression for accelerated failure time model with clustered and censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2334-2343, July.
    6. Lin, Huazhen & Li, Yi & Tan, Ming T., 2013. "Estimating a unitary effect summary based on combined survival and quantitative outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 129-139.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:93:y:2006:i:2:p:459-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.