IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v92y2005i4p971-974.html
   My bibliography  Save this article

A note on reducing the bias of the approximate Bayesian bootstrap imputation variance estimator

Author

Listed:
  • Michael Parzen
  • Stuart R. Lipsitz
  • Garrett M. Fitzmaurice

Abstract

Rubin & Schenker (1986) proposed the approximate Bayesian bootstrap, a two-stage resampling procedure, as a method of creating multiple imputations when missing data are ignorable. Kim (2002) showed that the multiple imputation variance estimator is biased for moderate sample sizes when this method is used. To reduce the bias, Kim (2002) proposed modifying the number of samples drawn at the first stage of the Bayesian bootstrap procedure. In this note, we suggest an alternative method for reducing the bias via a simple correction factor applied to the standard multiple imputation variance estimate. The proposed correction is more easily implemented and more efficient than the procedure proposed by Kim (2002). Copyright 2005, Oxford University Press.

Suggested Citation

  • Michael Parzen & Stuart R. Lipsitz & Garrett M. Fitzmaurice, 2005. "A note on reducing the bias of the approximate Bayesian bootstrap imputation variance estimator," Biometrika, Biometrika Trust, vol. 92(4), pages 971-974, December.
  • Handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:971-974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/92.4.971
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Demirtas, Hakan & Arguelles, Lester M. & Chung, Hwan & Hedeker, Donald, 2007. "On the performance of bias-reduction techniques for variance estimation in approximate Bayesian bootstrap imputation," Computational Statistics & Data Analysis, Elsevier, vol. 51(8), pages 4064-4068, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:92:y:2005:i:4:p:971-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.