IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i1p81-94.html
   My bibliography  Save this article

Statistical inference for infinite-dimensional parameters via asymptotically pivotal estimating functions

Author

Listed:
  • M. A. Goldwasser

Abstract

Suppose that a consistent estimator for an infinite-dimensional parameter can be readily obtained via a set of estimating functions which has a 'good' local linear approximation around the true value of the parameter. However, it may be difficult to estimate the variance function of this estimator well. We show that, if the set of estimating functions evaluated at the true parameter value is 'asymptotically pivotal', then the 'fiducial' distribution of the parameter can be used to approximate the distribution of this consistent estimator. We present three examples to illustrate that the corresponding inference for the parameter can be made via a simple simulation technique without involving complex, high-dimensional nonparametric density estimates. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • M. A. Goldwasser, 2004. "Statistical inference for infinite-dimensional parameters via asymptotically pivotal estimating functions," Biometrika, Biometrika Trust, vol. 91(1), pages 81-94, March.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:81-94
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhyun Park & Lu Tian & L. J. Wei, 2004. "One- and Two-Sample Nonparametric Inference Procedures in the Presence of Dependent Censoring," Harvard University Biostatistics Working Paper Series 1012, Berkeley Electronic Press.
    2. Larry F. León & Ray Lin & Keaven M. Anderson, 2020. "On Weighted Log-Rank Combination Tests and Companion Cox Model Estimators," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 12(2), pages 225-245, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:81-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.