IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v91y2004i1p165-176.html
   My bibliography  Save this article

A comparison of sequential and non-sequential designs for discrimination between nested regression models

Author

Listed:
  • Holger Dette

Abstract

Classical regression analysis is usually performed in two steps. In a first step an appropriate model is identified to describe the data-generating process and in a second step statistical inference is performed in the identified model. In this paper we investigate a sequential and a non-sequential design strategy, which take into account these different goals of the analysis for a class of nested models. It is demonstrated that non-sequential designs usually identify the 'correct' model with a higher probability than sequential methods. Although non-sequential designs can never be guaranteed to achieve the best possible efficiency in the 'correct' model, it is demonstrated by means of a simulation study that for realistic sample sizes the efficiencies of the non-sequential designs for the estimation of the parameters in the 'correct' model are at least as high as the corresponding efficiencies of the sequential methods. Copyright Biometrika Trust 2004, Oxford University Press.

Suggested Citation

  • Holger Dette, 2004. "A comparison of sequential and non-sequential designs for discrimination between nested regression models," Biometrika, Biometrika Trust, vol. 91(1), pages 165-176, March.
  • Handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:165-176
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miller, Frank & Dette, Holger & Guilbaud, Olivier, 2007. "Optimal designs for estimating the interesting part of a dose-effect curve," Technical Reports 2007,21, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    2. Douglas P. Wiens, 2009. "Robust discrimination designs," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(4), pages 805-829, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:91:y:2004:i:1:p:165-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.